
EERO HEINÄNEN
A METHOD FOR AUTOMATIC TUNING OF PID CONTROLLER
FOLLOWING LUUS-JAAKOLA OPTIMIZATION

Master of Science Thesis

Examiners: Prof. José L. Martinez
Lastra and Prof. Joni Kämäräinen

Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences on 28th March
2018

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Automation
EERO HEINÄNEN: A Method for automatic tuning of PID controller following
Luus-Jaakola optimization
Master of Science Thesis, 57 pages, 7 Appendix pages
October 2018
Major: Factory Automation and Industrial Informatics
Examiners: Prof. José L. Martinez Lastra and Prof. Joni Kämäräinen
Keywords: PID-controller, autotuning, optimization, machine learning, genetic algorithm,
Luus-Jaakola, swarm intelligence

Tuning parameters of a robot axis PID controller manually requires resources and
expertise. Even a skilled person cannot always produce optimal tuning parameters
manually. In addition, even if two robots would be copies of each other and should
perform equally well with same tuning parameters, manufacturing tolerances and
other physical differences and errors between axes cause them to perform differently
with the same parameter settings. Using lower gains to prevent oscillations results
in suboptimal performance. A robust autotuning method would increase axis perfor-
mance, decrease axis tuning expenses and allow finding optimal tuning parameters
for each mass-produced axis individually.

This thesis investigates suitable machine learning approach for OptoFidelity’s Op-
toDrive servo controller automatic tuning. Integrated squared error was used as a
performance index to evaluate the PID controller tuning. Luus-Jaakola optimization
was selected from the learning based optimization methods to optimize the tuning of
velocity and position PID controllers in OptoDrive. Controller performance achieved
with learning based autotuning was compared to results from manual tuning. To
speed up the tuning process, a novel method to adjust model based tuning method
with results from learning based method was developed. Both autotuning methods
were superior to manual tuning of position controller by decreasing the squared error
over 90 %. They also performed comparably to manual tuning of velocity controller.
Significance of the results were tested with two-sample Kolmogorov-Smirnov test.

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Automation
EERO HEINÄNEN: PID-säätimen parametrien optimointi Luus-Jaakola
optimointimenetelmällä
Diplomityö, 57 sivua, 7 liitesivua
Lokakuu 2018
Pääaine: Factory Automation and Industrial Informatics
Tarkastajat: Prof. José L. Martinez Lastra ja Prof. Joni Kämäräinen
Avainsanat: PID, säädin, virittäminen, optimointi, koneoppiminen, geneettiset algoritmit,
Luus-Jaakola, parviälykkyys

Robotin servoakselin PID-säätimen parametrien manuaalinen viritys on hidasta ja
vaatii ammattitaitoa. Inhimillisistä tekijöistä johtuen manuaalinen viritys ei tuota
optimaalista säätöä. Tämän lisäksi tuotantotoleranssien ja -virheiden sekä akselien
fyysisten erojen takia samat viritysparametrit eivät tuota samaa lopputulosta, vaikka
akselit olisivat toistensa kopioita. Pienempien vahvistusten käyttäminen säätimessä
vähentää akselin oskillointia, mutta samalla myös alentaa sen suorituskykyä. Luotet-
tava automaattinen viritysmenetelmä kasvattaa suorituskykyä, vähentää manuaali-
sen työn tarvetta ja mahdollistaa massatuotettujen robottien akselien virittämisen
yksitellen.

Työ käsittelee OptoFidelityn käyttämän servo-ohjaimen PID-säätimen automaattista
virittämistä koneoppimisalgoritmeilla. PID-säätimen suorituskykyä arvioitiin integroi-
malla neliöityä paikka- ja nopeusvirhettä. Nopeus- ja paikkasäätimien parametrien
optimointiin valittiin Luus-Jaakola-menetelmä. Automaattisen virittämisen jälkeen
suorituskykyä verrattiin manuaalisesti viritetyn säätimen suorituskykyyn. Lisäksi
työssä kehitettiin uusi mallipohjaisen virityksen optimointimenetelmä. Sen avulla
voidaan nopeuttaa säätimen virittämistä tinkimättä merkittävästi säätimen suoritus-
kyvystä. Luus-Jaakola -menetelmä sekä optimoitu, mallipohjainen Ziegler-Nichols
-menetelmä tuottivat säätimille merkittävästi parempia virityksiä. Automaattisen
virityksen avulla neliöity virhe laski paikkasäätimellä yli 90 % verrattuna manuaali-
seen viritykseen. Nopeussäätimen suorituskyky pysyi samana. Tulosten merkittävyys
testattiin kahden otoksen Kolmogorov-Smirnov -testillä.

PREFACE

This thesis combines my interests for automation and machine learning. It is great to
see that the developed autotuning system is able to tune the axis controllers better
than I ever could.

I would like to thank OptoFidelity Oy for the thesis topic and opportunity to
work and write the thesis in parallel. Big thanks goes also to my supervisors,
professors José L. Martinez Lastra and Joni Kämäräinen for guidance during the
thesis work. My motivation always increased after having a conversation with you
and I truely appreciate your input on the work. Thank you Hans Kuosmanen, SVP
of OptoFidelity, for your ideas and thoughts on the topic and efforts for the thesis
schedule. I am grateful to all OptoFidelity employees who gave input for the work
and participated manual tuning tests, thank you. Special thanks goes to my friend
and colleague Juha Koljonen, who has provided invaluable help, co-operation and
ideas during the whole project. This project would not have been possible without
your contributions, especially in building the test platform and developing the tuning
methods. Huge thanks belongs also to my girlfriend, friends and family. Thank you
for the support and constantly pushing me forward.

Shenzhen, 24th October 2018

Eero Heinänen

CONTENTS

1. INTRODUCTION . 1
1.1 Background and motivation . 2
1.2 Objectives . 3
1.3 Outline . 4

2. THEORETICAL BACKGROUND . 5
2.1 PID Controller . 6

2.1.1 PID controller terms . 7
2.1.2 Cascade controller . 8
2.1.3 Traditional tuning of a PID controller 9

2.2 PID controller performance indices 10
2.3 Parameter optimization . 12

2.3.1 Parameter search methods . 12
2.3.2 Evolutionary Algorithms . 16
2.3.3 Swarm Intelligence . 19
2.3.4 Parameter optimization summary 21

3. METHOD FOR ROBOT AXIS TUNING 23
3.1 Test system description . 23

3.1.1 Hardware . 23
3.1.2 Software and controller . 26

3.2 Tuning algorithm . 27
3.3 Fitness function . 29

4. IMPLEMENTATION AND TESTING . 31
4.1 Experimental test setup . 31
4.2 Implementation . 34

4.2.1 Performance index . 35
4.2.2 Optimization method . 35

4.3 Results . 37
4.3.1 Manual tuning . 37
4.3.2 Automatic tuning . 38
4.3.3 Optimized ZN tuning . 43

4.4 Result analysis . 44
4.4.1 Manual tuning . 45
4.4.2 Automatic tuning . 45
4.4.3 Performance comparison . 48

4.5 Discussion . 50
5. CONCLUSION . 53
REFERENCES . 54

CONTENTS i

APPENDIX A. LIST OF HARDWARE
APPENDIX B. MANUAL TUNING TESTING PLAN
APPENDIX C. MANUAL TUNING TEST LOG
APPENDIX D. AUTOMATIC TUNING

ii

LIST OF TABLES

2.1 System control terminology. 5
2.2 Ziegler-Nichols tuning method P, I and D gains [45]. 10
3.1 Mass plate weights. 26
4.1 Initial parameter values for automatic tuning with LJ. 36
4.2 Initial controller parameter values for the manual tuning experiments. . . 37
4.3 Manual tuning performance average and standard deviation. 45
4.4 Velocity controller performance. Tuning stage 1. 46
4.5 Position controller tuning performance. Tuning stage 2. 46
4.6 Means and standard deviations of LJ-tuned controllers. Tuning stage 3. . 47
4.7 Means and standard deviations of LJ-tuned controllers. Combined ISE

performance index was used in last tuning step. 47
4.8 Final comparison. Means and standard deviations of automatic and

manual tuning methods. 49
4.9 Kolmogorov-Smirnov test probabilities that two tuning performance re-

sults are drawn from same distribution. 50
C.1 Manual tuning without mass plate. 60
C.2 Manual tuning with mass plate 1. 60
C.3 Manual tuning with mass plate 2. 60
D.1 Automatic velocity controller tuning without mass plate. 61
D.2 Automatic velocity controller tuning with mass plate 1. 61
D.3 Automatic velocity controller tuning with mass plate 2. 61
D.4 Automatic position controller tuning without mass plate. 62
D.5 Automatic position controller tuning with mass plate 1. 62
D.6 Automatic position controller tuning with mass plate 2. 62
D.7 Automatic controller fine tuning without mass plate. 63
D.8 Automatic controller fine tuning with mass plate 1. 63
D.9 Automatic controller fine tuning with mass plate 2. 63
D.10 Automatic controller fine tuning with combined ISE, without mass plate. 64
D.11 Automatic controller fine tuning with combined ISE, with mass plate 1. 64
D.12 Automatic controller fine tuning with combined ISE, with mass plate 2. 64

iii

LIST OF FIGURES

1.1 OptoFidelity mobile device tester robot. 2
2.1 The PID controller model (combined figures from [10, pp. 830] and [2,

pp. 71]). 6
2.2 Structure of a cascade PID controller. [2, pp. 275] 9
2.3 Parameter space coverage comparison between GS and RS [4]. 14
2.4 Examples of uni-modal and multi-modal functions [14, pp. 4]. 21
3.1 Test system hardware overview. Controller motherboard is marked with

1 and linear servo axis with 2. 24
3.2 Test system actuator. Linear guide is marked with 1, forcer with 2,

carriage with 3, encoder reader with 4, magnets with 5, sliding blocks
with 6 and encoder stripe with 7. 25

3.3 Mass plates used for simulating different axis dynamics. Mass plate 1 on
right and 2 on left. 25

3.4 OptoDrive servo driver card. 26
4.1 Ideal position and velocity trajectories of the test setup. 32
4.2 Velocity error during six sample test movements. 33
4.3 Position error during six sample test movements. 33
4.4 Automatic tuning flowchart. Luus-Jaakola optimization method is used

for all tuning steps. 34
4.5 Box plots of manually tuned controllers’ performances. 38
4.6 Velocity controller performance over the generations. 39
4.7 Position controller performance over the generations. 40
4.8 Position controller performance during Luus-Jaakola tuning of the both

controllers. 41
4.9 Combined controller performance during Luus-Jaakola tuning of both

controllers, λ = 0.5. 43
4.10 KH method flowchart. 44
4.11 Box plots of the controllers fine tuned with the position ISE and the

combined ISE. 48

iv

LIST OF ALGORITHMS

2.1 Luus-Jaakola optimization. 15
2.2 Genetic Algorithm optimization [16, pp. 12]. 18

v

LIST OF ABBREVIATIONS

AGA Adaptive Genetic Algorithm
AR Augmented reality
CSV Comma Separated Value, file format for storing data
GA Genetic Algorithm
GS Grid Search
IAE Integral-Absolute-Error, performance measure calculated by inte-

grating absolute error
IE Integral-Error, performance measure calculated by integrating error
ISE Integral-Squared-Error, performance measure calculated by integrat-

ing squared error
ISTES Integral-Squared-Time-Error-Squared, performance measure calcu-

lated by integrating square of error multiplied by squared time
ISTSE Integral-Squared-Time-Squared-Error, performance measure calcu-

lated by integrating squared error multiplied by squared time
ITAE Integral-Time-Absolute-Error, performance measure calculated by

integrating absolute error multiplied by time
ITSE Integral-Time-Squared-Error, performance measure calculated by

integrating squared error multiplied by time
KH Koljonen-Heinänen, method for model based tuning method opti-

mization
K-S Kolmogorov-Smirnov, statistical test
ML Machine Learning
PID Proportional-Integral-Derivative, controller type
PSO Particle Swarm Optimization
RS Random Search
TCP/IP Transmission Control Protocol/Internet Protocol, networking proto-

cols
VR Virtual reality
ZN Ziegler-Nichols, model-based tuning method

vi

LIST OF SYMBOLS

c1−2 Coefficients for PSO velocity terms
e Controller error value
f Fitness value of the solution
f ′ Fitness value of the better solution in GA crossover
FF PID controller’s feed forward term
fmax Fitness of the best solution in population

f Average fitness of the population
G The best solution of the current PSO swarm
j Number of optimized parameters in GS
k1−4 Constants for Adaptive Genetic Algorithm
Kd PID controller’s derivative gain
Ki PID controller’s integral gain (1/Ti)
Kp PID controller’s proportional gain
Ku PID controller’s critical P-gain
li Number of possible values for ith parameter in GS
λ Hype parameter for fitness function
M Number of data points in one CSV file column
µ Mean
N Number of parameter combinations in search space
P The best location individual PSO solution has recorded
pc Genetic algorithm crossover probability
pm Genetic algorithm mutation probability
rt Process variable setpoint
rand Random number from range [0,1]
σ Standard deviation
t Time, [s]
Td PID controller’s derivative time
Ti PID controller’s integration time
Tu Output oscillation period at critical P-gain, [s]
u Control variable
Vi Velocity of one PSO solution candidate
Xi PSO solution candidate
y Process variable
ym Measured process variable

1

1. INTRODUCTION

Proportional-Integral-Derivative (PID) controller is the most used control algorithm
in the industry and it is still used in 80-90 percent of controlled processes in industry [3,
6]. It is widely tested and accepted de facto control scheme in industry, and thus
it is the first solution that should be tested when choosing the controller for a
new system or process that utilizes feedback [3]. However, to get the maximum
performance out of PID controlled systems, the parameters of the controllers should
be determined and selected for each system individually. This is called controller
tuning, and controller parameter combination found by tuning process is called tune.
The performance as compared to optimal controllers in industry can be as low as
50 %, which means suboptimal usage of a large portion of control systems. Tuning
controllers properly can significantly increase process performance. Depending on
the process, increased performance produces better quality, increased speed and
capacity or lowers downtime and risks of damage. Overall, more efficient systems
save resources and create competitive advantage. [6]

Tuning of PID parameters is not a trivial task, especially when there are multiple
controllers in system affecting each others. The applications utilizing PID-controllers
varies from very slow systems with long delays to real time systems that should and
can react to changes immediately. These applications have different requirements for
the controller and therefore there cannot be general controller tuning method that
would suit all cases. For any new application, the most suitable controller tuning
method should be investigated based on the system requirements. Furthermore, an
optimal tuning found for one system might not be optimal for a copy due to the
hardware differences. Therefore tuning is not only application dependent and the
best results are achieved when controllers are tuned individually.

This thesis is about automatic tuning of linear servo axis drive PID controller
parameters. Tuning of servo drive controller parameters is required to increase
controller performance. In addition, automating the sequence decreases costs of
resource intensive manual tuning process. In this work, controller tuning is completed
with learning based stochaistic methods and tested with real hardware consisting of
OptoFidelity’s electronic actuator controller, OptoDrive.

1. INTRODUCTION 2

1.1 Background and motivation

OptoFidelity is a robot based testing company that creates test solutions for mobile
devices, AR/VR headsets and other touch controllable and smart devices. One
OptoFidelity mobile device tester is in Figure 1.1. Test robots usually consist of
multiple axes with actuators and different types of applicators attached to them.
There are high demands for the performance of the mobile device test robots. They
are required to be reliable, fast and accurate, without forgetting competitive pricing
for the customer. To meet these requirements, there is a need to have the axes
controlled by high performance axis controllers. In OptoFidelity, requirements are
fulfilled by using the company’s own axis controllers that utilize PID controllers for
torque, velocity and position controlling.

Figure 1.1 OptoFidelity mobile device tester robot.

Testing needs are usually different in each customer case and robots are often
customized for each project. Therefore, the amount of test robots in company’s
product catalog is increasing. Differences among robots, including axis count and
length, materials and component choices such as motors and encoders, result in
multiple robots with different dynamics and properties. Varying configurations lead
to setting the controller parameters individually for each robot type. Also, when
delivering many robots of the same kind, the robots are still individuals and their
physical properties vary slightly. Even if the robots would be copies of each others
in theory, manufacturing tolerances, aging and errors in assembly cause differences
in robot dynamics. That leads to a situation where each controller should be tuned

1. INTRODUCTION 3

individually to reach the maximum performance. In practice, individual tuning of
the controllers manually is not possible due to resource limitations. Especially mass
delivery robots cannot be tuned manually one by one, but an average tune is set and
used in all robots. Tune needs to be robust for system changes to work with all copy
robots. Because of that, many robots are operating sub-optimally.

Currently in industry parameter tuning of axis controller is often done manually,
which consumes lot of resources. It is not unusual that tuning of one axis controller
can take hours or in some cases even days to achieve the desirable axis performance.
However, even if the tuner would be an expert, manual tuning does not guarantee
optimal or even near optimal result, as the goodness of the tune depends on tuner’s
subjective opinion about the performance. Humans have different understandings
about axis performance goodness and there is no single performance index that could
describe every aspect of axis performance. Therefore, performance index should
be chosen so that controller behavior is objectively optimized based on desired
behaviour.

The previously described tuning process and its problems create needs for an au-
tomatic axis tuning system. Increasing volumes of the robot deliveries cannot be
carried out efficiently and fluently with manual tuning. When considering the whole
business case of selling and supporting robotic measurement devices, automating
system bring-up steps, such as controller tuning for each robot, creates a competitive
advantage. A parallel thesis work of Juha Koljonen [15] studies well-known model
based controller tuning methods for OptoFidelity robot controller tuning. In contrast
to Juha’s work, this thesis explores model free, machine learning (ML) algorithm
based approaches. As the controller used in Optofidelity products has more parame-
ters than the ideal textbook version of a PID controller, conventional model-based
tuning methods cannot utilize all controller capabilities.

1.2 Objectives

As described in Section 1.1, the problem this thesis is attempting to solve is the
inefficient, resource intensive and human-dependent manual servo drive controller
tuning process with more automatic methods. This work investigates ML algorithms
for the PID controller tuning with real hardware used by OptoFidelity. The main
research question is: can machine learning algorithms be utilized to automatically
tune OptoDrive servo controller parameters? What performance can be achieved
with such algorithms as compared to conventional PID controller tuning methods
and manual tuning? These are the research questions this thesis will attempt to
answer.

1. INTRODUCTION 4

Primary objective of this thesis is to select a suitable stochastic method for tuning
OptoFidelity’s servo drive controller and implement and test the method. Comparison
of manual and selected tuning methods is done with measurements from tests with
real hardware. Selection of performance metrics should be considered as learning
based optimization methods will optimize only given this as tune fitness function.

Studying ML-based parameter optimization methods and choosing one for a closer
study is the main scope of this thesis. Tuning the servo controller with conventional
tuning methods is investigated and developed in separate, concurrent thesis work
and its results are used for comparison in this work. The system is tested with a
linear servo axis with different weights, but other types of axes such as ballscrew
axes, are left out of scope. In addition to that, the tuning system will be tested with
OptoFidelity’s existing hardware and software, and may not be applicable for other
servo systems as such.

1.3 Outline

After introduction in Chapter 1, Chapter 2 contains a literature review that includes
a short introduction to PID controllers and their performance indices. In addition,
Chapter 2 presents a set of parameter optimization methods, focusing mostly on
learning based parameter optimization methods. In Chapter 3 the test system
is described and the optimization methods and performance indices are discussed
and selected for implementation. In Chapter 4 is a detailed description about the
automatic tuning system implementation and testing. Also the achieved results are
presented and analyzed. Finally, thesis results are concluded in Chapter 5.

5

2. THEORETICAL BACKGROUND

Controller is a system that attempts to keep the process variable close to the
setpoint by adjusting the control signal. Short description of the used terminology is
presented in Table 2.1. Process control can be divided to the two categories: open
loop control and closed loop control. Closed loop controller can utilize measured value
of the process variable and therefore compensate the disturbances in the controlled
system. [2, pp. 5-6].

Table 2.1 System control terminology.

Term Description

Control error Difference between the setpoint and the process variable.
Control signal Controller output, signal from controller to actuator.
Dead time Time from setpoint change until process variable changes.
Delay margin Amount of delay that can be added to process until it becomes unstable.
Overshooting Process variable exceeding setpoint.
Process damping Decay ratio of process oscillations.
Process variable Output of the process.
Setpoint Desired value of the process variable.
Settling time Time from controller setpoint change to steady state.
Steady state State where process variable has settled to defined range.
Steady state error Difference between process value and setpoint in steady state.

In open loop control, the control command is calculated based on system model and
desired action. Precalculated control is then sent to the system to produce desired
action. The process is expected to be ideal as modelled and there is no mechanism
to compensate errors or disturbances in the process. In contrast, closed loop control
utilizes measured process values to adjust control commands, which allows error
compensation. Measured process values are real feedback from the process and are
compared to controller setpoint. When the difference between a measured process
value and a controller setpoint is known, the controller modifies the control signal to
reduce the error. [10, pp. 827-828]

The studied controller type in this work is the closed loop PID controller, which is
presented in more detail in Section 2.1. Methods to evaluate controller’s performance
are studied in Section 2.2. After that, methods for optimizing controller’s parameters
is presented in Section 2.3.

2. THEORETICAL BACKGROUND 6

2.1 PID Controller

By far the most popular control algorithm in the industry is a Proportional-Integral-
Derivative (PID) controller [2, pp. 59]. It is a closed loop controller that utilizes
process value measurements as a feedback from the system. Ideal PID controller
has simple structure and can be adopted to a wide range of systems and processes
and produce satisfactory control performance. The structure of a PID controller is
presented in Figure 2.1. The process setpoint is denoted as r, process error as e,
control signal as u, process value as y and measured process value as ym. The PID
controller parameters Kp, Ti and Td are presented in more detail next.

I,
1

Ti

∫ t

0
e(t)dt

P, Kp × e(t)

D, Td ×
de(t)

dt

Controller

Systeme + u

Measurement

r y

−

ym

Figure 2.1 The PID controller model (combined figures from [10, pp. 830] and [2,
pp. 71]).

Adjusting controller parameters to produce desired response of the controlled system
is called controller tuning [2, pp. 5]. Controller tuning is required for each system to
achieve the best performance of the controlled process. There are many proposed
tuning methods available [22]. Each tuning method attempt to produce the optimal
tune for a certain type of process. Targets of different algorithms are varying from
robustness with big delay margin and process dampening to fast control that reacts
strongly to even small changes in the process [39]. Sometimes slower but robust
control without fast changes is desired even if reaching the setpoint takes longer, and
sometimes quick controllers are preferred over settling time or overshoot minimization.
Tuning method provides a tradeoff between attenuation of disturbances, decreasing
effects of measurement noise, control robustness and reaction time to setpoint
changes [2, pp. 196]. For example, stabilizing room temperature with automatic
heater requires robust control and stability is more important than the fast response

2. THEORETICAL BACKGROUND 7

time. In the other hand, quick control and short reacting time are important to
unstable systems such as inverted pendulums. As can be determined from the various
types of controllers and tuning methods, choosing a proper tuning method is crucial
to get the desired result for the selected system.

Following sections describe ideal PID-controller structures and basic PID-controller
tuning methods.

2.1.1 PID controller terms

Ideally, a PID controller is based on three controller terms that are computed and
combined to get a new control value. These three, are proportional, integral and
derivative controller terms.

The proportional term (P-term), called also the proportional gain, is a proportional
correction term to the control error e = r − ym. If only the proportional term is
used, the control output u is proportional to the control error, which often leads to
steady state error. To reduce the steady state error, integral of the control error is
used. Integral term (I-term) ensures that even a small control error always leads to
increasing or decreasing the control signal, until the error reaches zero. I-term is an
automatically tuned bias term of the controller. Due to process dynamics, a change
in process output does not immediately change after changing the control variable.
Therefore, the control error does not change and the controller has a delay when
correcting changes of the process. To produce more aggressive and reactive control
and to decrease the control delay, derivative term (D-term) is utilized. The derivate
of the control error indicates direction of the process change and thus reflects the
immediate future behavior of the process. This prediction allows faster control, but
due to nature of derivate, D-term is affected by measurement noise. [2, pp. 64-70]

By combining the three terms resulting equation of general PID controller in ideal
noninteractive form is

u(t) = Kp ×
(
e(t) +

1

Ti

∫ t

0

e(t)dt+ Td ×
de(t)

dt

)
, (2.1)

where t is time, u is the control variable and e is the control error. Kp, Ti and Td
are proportional gain, integral time and derivative time respectively.

Another, parallel form of the general PID controller equation is

u(t) = Kp × e(t) +Ki ×
∫ t

0

e(t)dt+Kd ×
de(t)

dt
, (2.2)

2. THEORETICAL BACKGROUND 8

where Ki =
Kp

Ti
and Kd = Td ×Kp.

Equation 2.1 is in noninteractive serial form. Equation 2.2 is in parallel form, where
all terms are separated from each other. Both of the forms are commonly used in
literature and can be found in [40, pp. 7-8]. The controller form should be considered
when selecting PID controller tuning method, as model-based tuning methods are
developed for certain controller structures [2, pp. 110].

In addition to the three presented controller actions, there is an additional action
which allows utilizing information from former phases of the process. It is called
feed forward action and it can be used to eliminate the effects of disturbances before
they cause error to the controlled system. Feed forward term, as its name states, will
forward information from earlier phase of the system to the controller. If feed forward
is used, changes in process can be compensated in control before it has affected the
system. For example, when considering a system that heats water flowing to a heater
to a certain temperature, the temperature of the water can be measured before it
enters the system. Then the heating power can be adjusted before the change in
the heater output is seen. The other example is more related to this thesis: if the
position setpoint change is forwarded to the velocity controller, the velocity controller
can adjust the velocity before the position controller reacts to the position error. [2,
pp. 281-284]

Originally PID-controllers were analog devices, but today it is more common to
implement controllers with digital devices, such as microprocessors, which requires
digital implementation of the PID control scheme. Digital implementation of PID
controller is required to take care of sampling the process values. As discrete sampling
is prone to signal aliasing, analog signal antialiasing filtering should be applied to a
measurement signal before sampling. [2, pp. 93-100]

2.1.2 Cascade controller

Control performance can be increased by measuring more signals from the system
and using them in control. Control of different parts of the system can be distributed
to multiple controllers. If one controller output signal is an input for the other
controller, the controllers are nested. For example, when the axis position needs to
be controlled, it creates a need for the inner velocity controller. Furthermore, velocity
controller requires nested torque controller. This type of controller combinations are
called cascade controllers and they often increase the performance of more complex
systems by providing possibility to individually control different characteristics of
the system. The example block chart of a cascade controller is in Figure 2.2. [2, pp.
274-276]

2. THEORETICAL BACKGROUND 9

Outer
controller

Inner
controller

Inner
system

Outer
system

r e1 u1 e2 u2 y1

Inner
measurement

Outer
measurement

y2
−

ym1

−

ym2

Figure 2.2 Structure of a cascade PID controller. [2, pp. 275]

As can be seen from the Figure 2.2, the outer controller output is the input of the
inner controller. Cascade control is most beneficial when the process is slow, for
example, due to long dead time. Often the inner loop of the cascade controller
controls an actuator, while outer controller takes responsibility of actual process
value. An example is a water tank of which level is controlled by valve controlled
input. In this example, outer control loop uses water level measurement as feedback
and gives setpoints to water input valve. If the process was controlled with only one
controller, it would be required to have slow response time due to low velocity of
the process. With a cascade controller, inner control loop uses valve orientation as
feedback. Valve control is quicker process than whole water tank process and can
therefore have higher gains. Fast inner process control makes it possible to increase
the gains of the outer control loop as the system is more responsive. That results
faster response in the whole system. The amount of controllers in cascade is not
limited but there can be as many as required. The inner control loop of a cascade
controller is recommended to be running at least five times faster than the outer loop
to get the maximum benefit from the cascade topology. [2, pp. 274-277]. Downside
of the cascade controller is that it has more parameters to tune and is therefore more
complex to be tuned and its stability requires special attention [23].

2.1.3 Traditional tuning of a PID controller

Tuning of a PID controller is often done manually or with one of the well-known
tuning methods such as Ziegler-Nichols (ZN) tuning method [45]. Comparisons
of traditional tuning methods and their performances in different systems can be
found in [36] and [31]. Manual tuning is often trial-error based and requires a lot of
expertise.

ZN tuning method is based on finding the critical proportional gain for P controller.
Critical gain is searched by increasing the controller proportional gain until a step
change in the setpoint causes steady, constant amplitude sine wave to the system

2. THEORETICAL BACKGROUND 10

output. When the critical gain Ku and the output oscillation period Tu are found,
the PID controller parameters are calculated with coefficients in Table 2.2. [45]

Table 2.2 Ziegler-Nichols tuning method P, I and D gains [45].

Controller type Kp Ti Td

P 0.5×Ku - -
PI 0.45×Ku

Tu/1.2 -
PID 0.6×Ku

Tu/2 Tu/8

Vendors might offer their own PID controller tuning guides, such as National In-
struments guide [33], Granite Devices guide [37], NovaTech guide [28] and Precision
MicroControl guide [30]. The guides utilize each company’s own software and hard-
ware and might not be suitable for other controllers or systems. According to these
guides, tuning is still an iterative process and guides are attempting to reduce amount
of trial and error that is required to achieve a good tune. In these guides, performance
of the tune is determined by user from tuning graphs, which make tuning process
highly dependent on user knowledge and expertise.

2.2 PID controller performance indices

Performance indices of PID controllers can be divided to two categories. The first
category includes characteristics that can be explicitly found from step response of
the system, such as rise time, settling time, decay ratio, overshoot and steady-state
error [2, pp.122, 127-128]. The indices in the second category are calculated from
the step response by integrating the process error, thus called integral performance
criteria [1]. Those are computationally more demanding than the indices in the first
category, but they are more comprehensive since performance is calculated over the
whole error data, not only from one feature of the system response.

There are four commonly used PID controller integral performance indices: Integral-
Absolute-Error (IAE), Integral-Squared-Error (ISE), Integral-Time-Absolute-Error
(ITAE) and Integral-Time-Squared-Error (ITSE). IAE is used for example in [1,
23, 25], ISE in [23] and ITAE in [2, 25]. All of them are also described in [2,
pp. 128]. Other integrative indices such as Integral-Squared-Time-Error-Squared
(ISTES) and Integral-Squared-Time-Squared-Error (ISTSE) are also available [22].
The comprehensive PID tuning rule summary in [22] shows that these integral
performance indices are often utilized in PID controller performance comparisons.

Since the error is integrated a lower value means better performance. The equations

2. THEORETICAL BACKGROUND 11

of the most commonly used performance indices are

IAE =

∫ ∞
0

|e(t)| dt (2.3)

ISE =

∫ ∞
0

e(t)2 dt (2.4)

ITAE =

∫ ∞
0

t× |e(t)| dt (2.5)

ITSE =

∫ ∞
0

t× e(t)2 dt (2.6)

As the name of IAE states, the measured error absolute value is integrated without
any additional terms or multipliers. Absolute value of error is used to prevent errors
with different sign from compensating each others, as would be the case with IE
(Integral-Error) performance index [2]. All errors over time get equal weight when
calculating IAE and effect depends linearly on the magnitude of error. In other
words, time of occurrence of the error does not affect the IAE performance index
and doubling the magnitudes of errors doubles also IAE. Similar to IAE, time does
not affect the performance value of ISE. However, as error is squared, errors with
larger magnitude are emphasized. Thus it can be seen that a PID controller tuning
based on ISE will result in a smaller overshoot compared to IAE but longer settling
time compared to time weighted ITAE and ITSE [44].

Alternatives to the step response indices can be achieved by weighing the error by
the time of occurrence. ITAE and ITSE use time as a multiplier for the error during
integration. That reduces the impact of the error caused by setpoint change in the
beginning of the step response test. In addition to that, it emphasizes errors occurring
later in the step response test, which will help minimizing remaining oscillations and
steady state error. [44]

Presented performance indices measure different properties of the PID controller
performance. Characteristics of the step response, such as rise and settling times
and controller overshoot, can be used to measure the performance. If the system
has requirements for those values, it is reasonable to choose them to evaluate the
performance of a controller. For example, in some cases too high setpoint overshoot
cannot be tolerated in the system and therefore measuring and optimizing that
exact feature is justified. In contrast to indices calculated based on one key point
of step response, integrative performance measures describes the overall setpoint
error. This means that the same value for performance can be achieved with very
different step responses. It should be noted that measurement length affects these
performance indices as the sum of errors is calculated and even the smallest errors
are noted. When the error is squared, it will emphasize the effect of larger errors

2. THEORETICAL BACKGROUND 12

and correspondingly decrease the impact of smaller errors. Squaring the errors
can be used when the maximum error should be minimized and tracking of the
setpoint is important feature for the system control. Depending on the controller
structure and the use case, also time can be used as a multiplier for the error. If
it is crucial to get system to stabilize to the setpoint but the path to setpoint is
not important, multiplying the error by time will emphasize the errors in later,
more important parts of the control. Also, if the setpoint change is a sharp step
without any smoothing, error will be large near the quick changes. In that case, if
all error points are considered equally important, faster response controller tuning
will have better performance than the slower controller with better stable state
control. However, if the error is time weighted, the effect of error at setpoint change
time is decreased and stable state performance is emphasized. Choosing the right
performance index for a controller is not a trivial task as requirements and desired
behavior are different for separate applications.

2.3 Parameter optimization

Alternatives for manual and conventional (eg. Ziegler-Nichols [45]) controller tuning
methods are model-free, iterative, nonlinear optimization based tuning methods.
These methods are often inspired by biology, such as evolution [16, 35] or behavior
of animals [7, 13, 42]. A comparison between conventional PID-controller tuning
methods and optimization methods is in [27]. Three nonlinear methods are presented
in more detail in Section 2.3.1: Grid Search (GS), Random Search (RS) and Luus-
Jaakola (LJ) optimization. From evolution based optimization methods Genetic
Algorithm (GA) and Adaptive Genetic Algorithm (AGA) are studied and from the
group of animal behavior based methods Particle Swarm Optimization (PSO) is
presented.

2.3.1 Parameter search methods

Multi-dimensional parameter optimization can be done by searching the best solution
from the parameter space by testing different parameter combinations and measuring
their performances. The most used strategies for hyperparameter optimization are
Grid Search, Random Search and Manual search [4]. These methods are general
solutions to optimization problems. However, as they are trial-error based approaches,
they require a lot of computation time.

2. THEORETICAL BACKGROUND 13

Manual Search

Manual search (MS) requires a user to change the parameters, determine the new
parameter set performance and repeat this sequence until the system performance is
at the desired level. Experienced user can decrease iteration count by leaving clearly
unsuitable parameter combinations out. However, reproducing MS optimization
results is hard, if not impossible, as the whole optimization process depends on
a individual user. Also, determining the performance manually slows down the
optimization process. In PID tuning context, MS corresponds to manual tuning
described in 2.1.3.

Grid Search

Grid Search (GS, parameter sweep) is a well-known brute force optimization method.
In GS all possible parameter combinations are evaluated. Therefore, a finite set of
values is defined for all parameters. Higher parameter resolution means denser grid
and more accurate search. As a downside it also increases the number of parameter
combinations. GS is guaranteed to find a global optimum in defined parameter space
if the grid density approaches infinity. The solution is optimized based on the chosen
fitness function. Fitness functions were described more closely in Chapter 2.2 in the
form of the PID controller performance indices. Grid Search can be considered as a
brute-force method for parameter optimization. The size N of a parameter space for
GS can be calculated by Equation 2.7:

N =

j∏
i=1

li, (2.7)

where j is the number of parameters and li is the number of possible values for the
ith parameter. As can be seen from Equation 2.7, parameter space size increases
rapidly when the number of parameters and grid density increase. [4]

The search is exhaustive, which can be considered both positive and negative fea-
ture of the method. The globally optimal solution will be always found from the
given parameter space, but to achieve that the whole parameter space needs to
be investigated and parameter combinations tested. The GS algorithm is easy to
implement. Grid Search requires a small amount of prior knowledge, including limits
and resolutions for each optimizable parameter. However, it is often the case that
the resources are limited and especially in the case of multi-parameter optimization,
GS is too resource intensive method to be used. It can be used in hyperparameter
optimization tasks and is implemented in commonly used Scikit-learn library [24].

2. THEORETICAL BACKGROUND 14

Although the method can find the global optimum, it requires a lot of resources with
higher dimensional problems [4].

One beneficial aspect of GS is that it is extremely parallelizable. Since all parameter
combinations are known beforehand, they can be all tested in parallel if the system
allows running parallel tests, for example in simulations.

Random Search

Random Search (RS, also Random Sampling, Monte Carlo method), is one of the
simplest methods to search the optimal solution to an optimization problem [34,
pp. 248-250]. While Grid Search has equidistant, predefined grid of parameters
that is exhaustively searched through, in RS a collection of randomly generated
parameter combinations is used. Because parameter combinations are randomly
chosen from the parameter space, grid is not evenly formed and is able to choose any
value in the parameter range. That is a desirable property of parameter optimization
method when the amount of parameters is high and some parameters might be more
important than others. It can be seen from visualization of GS and RS in Figure 2.3.

Grid Search Random Search

Important parameterImportant parameter

U
ni

m
po

rt
an

t
pa

ra
m

et
er

U
ni

m
po

rt
an

t
pa

ra
m

et
er

Figure 2.3 Parameter space coverage comparison between GS and RS [4].

Although the parameter combinations can cover the whole parameter space, the
randomness is also the main downside of the method. Especially with a small amount
of points it is highly likely that some parts of the parameter space are left unsearched.
Evaluating more parameter combinations increases the probability of covering the
whole parameter space but requires more computation time [4]. RS is particularily
suitable for two kinds of applications. The first application type are those that
have plenty of sufficient solutions and one can be found easily by randomly testing
different candidates. In this case RS would be simple and efficient method for finding
one sufficiently good solution. The second type includes applications where the
search space is not coherent and solution does not tell anything about neighbouring

2. THEORETICAL BACKGROUND 15

solutions. One example of this is the search of prime numbers. In that case, search
should not be directed to any specific area or range as found prime numbers do not
indicate if the numbers near them are prime numbers or not. Similar to GS, also RS
is extremely parallelizable. [34, pp. 248-250]

Luus-Jaakola Optimization

In 1973 a general parameter optimization method Luus-Jaakola (LJ) was developed
as a goal to create a simple optimization method for nonlinear problems [20]. The
LJ procedure is described as a pseudocode in Algorithm 2.1.

Algorithm 2.1 Luus-Jaakola optimization.
1: procedure LuusJaakolaOptimization
2: X ← initialSolution . Initialization
3: r ← initialRanges
4: populationSize ← selectedPopulationSize
5: while not TerminationCondition do . Optimization
6: for i in range(populationSize) do . One generation
7: yi ← random(−r/2, r/2)
8: xi ← X + yi
9: evaluateFitness(xi)

10: end for
11: X ← bestSolutionOfPopulation
12: r ← r ∗ (1− ε) . Shrink range, 0 < ε < 1
13: end while
14: return X . The final solution
15: end procedure

The proposed method achieved its goal as a simple, general parameter optimization
method. The implementation is straightforward (Algorithm 2.1) and the method
does not require complex calculations. Generality comes from low constraints to the
problem. It is also semi-parallelizable: goodness of parameter combinations in one
iteration can be calculated in parallel, but since the result of one iteration affects the
next ones, it makes the method more sequential. The method is not guaranteed to find
the global optimum, but when given enough iterations and shrinking the parameter
region slowly enough, the method will usually find a good solution robustly and it is
not affected by local optimums. As the method does not use gradient calculation
at any point, it can be used in non-differentiable problems [20]. LJ method has
been successfully used for optimization applications such as model reduction [19],
optimizing optical coating [21], finding solutions for nonlinear system equations [29]
and also in PID-controller tuning [26].

2. THEORETICAL BACKGROUND 16

2.3.2 Evolutionary Algorithms

Evolutionary algorithms are general, population based optimization methods used
widely in global optimization problems. They are inspired by evolution theory
which appears to work in nature. In these algorithms, one generation consists
of individual solution candidates for the optimization problem. The fitness of all
solutions of the population is evaluated and the next generation is created based on
the previous generation results. Following sections describe commonly used operators
of evolutionary algorithms and two optimization methods that are grouped under
evolutionary algorithms.

Genetic Operators

The evolutionary process in evolutionary algorithms is achieved with three genetic
operations. Operations are inspired by real events of evolving genes. These three
operations are crossover, mutation, and selection, and they are used as genetic
operators in the algorithms. In addition, GA operators include fitness evaluation
and termination operators. [16, pp. 11-12]

To understand these operators, concept of genotype-phenotype mapping should be
understood. The genotype is a genetic expression that describes the real solution,
the phenotype. Mapping abstracts the solution to easily combinable and modifiable
form. Therefore, if the solution can be described in continuous space, the mapping
might not be needed at all. If mapping is used, it should not introduce bias to the
solution representation. That is to avoid biased phenotype change when genotype
is modified in unbiased way. In digital context, bit sequences can be considered
as genotype-phenotype mappings. Unbiased example of a bit sequence genotype-
phenotype mapping is a status bit sequence: every bit in the sequence has specialized
meaning and all bits are equally important. In contrast, if the phenotype is a
number and genotype is binary representation of the number, unbiased change in bit
representation will result in biased change in original value as some bits are more
significant than others in binary expression. [16, pp. 15]

Crossover is the operator that combines genes or properties of parent solutions.
Even though in nature the child has usually two parents, the GA operator can be
extended to combine even more parents. If the gene is represented as a bit string,
the common way to mix the parents is n-point crossover. The bit strings are divided
at n positions and the child solution is created by randomly using parts from both
parents. With this operation the resulting solution may have properties that either
one of the parents did not have. Also continuous ranges can be used instead of bit
strings: in that case crossover operation can be applied by calculating the mean of

2. THEORETICAL BACKGROUND 17

each part of the n+1 parts the parents are divided to. For example, when one-point
crossover is applied to solutions of 1010 and 1100 possible resulting offsprings are
1010, 1100, 1000 and 1110. For continuous values, consider crossover for solutions
(1, 5) and (3, 3). The resulting offspring would be (2, 4), the mean of the parent
solutions. As can be seen from the examples, the offspring solution candidates may
be different from any parent. That allows the evolution process to generate new,
previously unseen solutions to test. [16, pp. 12-13]

The second GA operator is mutation. It changes the genes of the solution randomly
which will result in new solution candidates. The basic version of mutation operator
has three requirements: reachability, unbiasedness and scalability. Reachability
means that the mutation operation should be able to modify the gene to any value
in the range of the gene. The probability of reaching any point is not required
to be equal, but reachability of any point will result in possibility to achieve the
global optimum solution instead of a local one. Unbiasedness implies that there
should be no preferred direction of the random change. Scalability of the strength
of modification is the third requirement. All of the aforementioned requirements
can be achieved for example by using Gaussian distribution in mutation. Gaussian
distribution allows reaching any point in gene value range, is not biased to any
direction and the strength of mutation is adaptable with standard deviation of the
distribution. [16, pp. 13-15]

The third operator, selection, is used to select the parents for generating a new
generation of solutions. The selection should prefer the fitter solutions for parents of
the next generation to guide the population evolving towards the optimum solution.
Elitist selection achieves this by selecting the best solutions based on evaluated
fitness values. In contrast, comma selection selects survivor solutions randomly, but
probability of each solution is calculated with its fitness. Plus selection extends
comma selection by also selecting parents of selected solutions. Comma and plus
selections enable suboptimal solution candidates to be selected as parents. Thus
there can be child solutions generated from less optimal parents to get more coverage
on the search space. However, even if it would be temporarily harmful for the
search algorithm, the fittest solutions should not be inserted to next population. By
discarding the fittest solutions the algorithm is able to overcome the problem of
converging to the local minimum. [16, pp. 15-17]

Genetic Algorithm

Genetic algorithm (GA) is an optimization method under evolutionary algorithms.
The operators described in Section 2.3.2 are used when utilizing the power of evolution
for optimization problems. GA has been successfully used in optimization problems

2. THEORETICAL BACKGROUND 18

such as antenna design in [8] and multiple times in PID controller tuning in [9, 17,
39]. GA optimization process is shown as pseudocode in Algorithm 2.2.

Algorithm 2.2 Genetic Algorithm optimization [16, pp. 12].
1: procedure Basic Genetic Algorithm
2: Initialize population
3: repeat
4: repeat
5: crossover
6: mutation
7: phenotype mapping
8: fitness computation
9: until population complete

10: selection of parental population
11: until termination condition
12: end procedure

If used as such, GA requires hyperparameter tuning for each problem. The method’s
hyperparameters are population size, mutation probability and crossover rate. In-
creasing population size increases computation time proportionally, as there are more
solutions generated and tested. In return the robustness of the algorithm rises for
the same reason. Mutation probability affects on how much the individual solutions
are modified between the generations. Higher mutation probability allows wider
search of the parameter space, but it decreases the optimization convergence rate as
the solutions are more likely to move in the search space randomly [16, pp. 24-26].
Crossover rate describes the weights of the parents when applying crossover operation
to create new offsprings [16, pp. 12-13]. Also, fitness function of the algorithm should
be carefully chosen to describe the goodness of the solution properly as the whole
optimization process is guided by the solution fitnesses [16, pp. 15-16]. In addition
to those, the selection operator method and termination criteria should be selected
based on the problem domain. Termination criteria often includes convergence of
the optimization process and maximum iteration count criteria [16, pp. 17-18].

GA has also been criticized by its inefficiency: even though the evolution process
undoubtedly will lead to decent solution, the question is more of if it can find better
solution with less resources and complexity than other optimization methods. The
problem of GA is described in [34, pp. 265-266]: "Indeed, the analogy with evolution
— where significant progress require millions of years — can be quite appropriate."

Adaptive Genetic Algorithm

To overcome the problems with GA while still utilizing the power of evolution
Adaptive Genetic Algorithm (AGA) was developed. It is strongly based on GA

2. THEORETICAL BACKGROUND 19

and the only difference of these two is in adjusting crossover rate and mutation
probability automatically during the optimization process. Because original GA has
tendency to find local optimum with low mutation probability pm and crossover rate
pc , those are adaptively adjusted. When the population average fitness approaches
population’s best solution fitness, pm and pc are increased to explore the parameter
space with less fitter solution candidates. In contrast to that, those values are
decreased when the population has scattered around with different fitnesses. The
behavior is achieved with equations 2.8 and 2.9. Constants k1 and k2 values should
be below one to constrain pc and pm to range (0.0, 1.0). The fitness of the best
solution of the population is denoted with fmax, f ′ is larger of the crossed solutions’
fitness values, f is the population average fitness and f is the fitness value of the
solution itself. [35]

pc =
k1 × (fmax − f ′)

fmax − f
, k1 ≤ 1.0 (2.8)

pm =
k2 × (fmax − f)

fmax − f
, k2 ≤ 1 (2.9)

By using these equations to adapt the GA parameters, solutions with good fitness are
protected with low mutation probability and crossover rate while worse solutions are
modified more to overcome local minimum problems. To prevent pc and pm getting
values over one there are two more constrains 2.10 and 2.11 presented:

pc = k3, f
′ ≤ f (2.10)

pm = k4, f ≤ f, (2.11)

where values of k3 and k4 are constants from range (0.0, 1.0).

AGA has been used in Alzheimer’s disease progression prediction [38] for choosing
the suitable feature set to use for disease diagnostics. Suitability and performance
improvement over GA has also been shown in combat force allocation simulation [5]
which is a multi-objective problem. Considering the topic of this thesis, it has also
outperformed Ziegler-Nichols and classic GA methods in PID controller parameter
tuning [18].

2.3.3 Swarm Intelligence

The third presented category of model-free optimization methods is Swarm Intelli-
gence. The inspiration for these optimization algorithms comes from group behavior

2. THEORETICAL BACKGROUND 20

in nature. For example, there are methods based on bee swarms [12], elephant herd-
ing [42] and many more. Compared to evolutionary algorithms, swarm intelligence
methods does not generate new populations from previous ones but rather moves
the solutions in swarm towards the more optimal solutions. Otherwise the approach
is rather similar to evolutionary algorithms: swarm solution fitnesses are evaluated
and solutions modified until some termination criteria is met. One of popular Swarm
Intelligence method is Particle Swarm Optimization that is presented in more details
next.

Particle Swarm Optimization

Until 1995 Swarm Intelligence methods were based on animal behaviors such as
bird flocking and fish schooling. Then human social behavior based Particle Swarm
Optimization (PSO) was developed. It extends the previous methods’ relations to
physical phenomena with cognitive and experiential variables of humans. As in the
evolutionary algorithms, also PSO population, swarm, consists of solution candidates
to the optimization problem. The solutions are called as particles and the ith d-
dimensional particle denoted as Xi = (xi1, xi2, ...xid). The solutions dimensionality
depends on the number of optimizable parameters. Each particle has also velocity
Vi = (vi1, vi2, ...vid) which allows particle to move in the search space in each iteration.
After the fitnesses of particles are evaluated, velocities of particles are updated so
that they would approach the best particle of the current swarm G = (g1, g2, ...gd)

and the best location that particle itself has been at during optimization process
P = (p1, p2, ...pd). As the best particles attracts the whole swarm towards themselves,
the particles will approach the globally best particle after a reasonable amount of
iterations. [13]

The equation for updating particle’s velocity is

vid = w × vid + c1 × rand1 × (pid − xid) + c2 × rand2 × (gid − xid) (2.12)

where c1 and c2 are constant weights for velocity terms and rand1 and rand2 are
random numbers from range [0, 1]. It has been proposed to use the weight factor
w for current velocity but the optimal values have been found near one [32]. The
recommended value for constants c1 and c2 is 2, since it results in particle to be
directed to both global best and its own best locations with equal strength [32]. Also,
with c1 = c2 = 2, the particles have enough momentum to move past their targets
about half of the time. It allows more exploration of the parameter space and to
avoid convergence to local optima [13]. After updating particle velocity, its position

2. THEORETICAL BACKGROUND 21

is updated with straightforward Equation 2.13 [13].

xid = xid + vid (2.13)

The hyperparameters that should be chosen are swarm size, constants c1 and c2

and velocity weight factor w. In addition, a fitness function must be selected and
optimization termination criteria should be defined. Considering the algorithm and
its hyperparameters, it has achieved one of its goals as being a simple method to
implement.

2.3.4 Parameter optimization summary

The described parameter optimization methods were divided to three categories:
parameter search, evolutionary programming and swarm intelligence. Each category
and method have their strengths and weaknesses and there is no method that would be
better than others in every problem. Goodness of the method for specific optimization
problem depends on the problem properties. As can be seen from Figure 2.4, simpler
problems with uni-modal fitness function can be solved by greedy algorithms which
will quickly find the only global optimum. If gradient of the fitness function is not
known or it does not contain useful information for finding the optimum value, as is
with multi-modal functions, randomized or stochastic optimization methods that do
not require gradient calculations are more suitable [14, pp. 4-5].

x x x

Uni-modal function Multi-modal function
with few local optima

Multi-modal function with
no useful gradient information

F
it
ne

ss
fu
nc

ti
on

f
(x
)

F
it
ne

ss
fu
nc

ti
on

f
(x
)

F
it
ne

ss
fu
nc

ti
on

f
(x
)

Figure 2.4 Examples of uni-modal and multi-modal functions [14, pp. 4].

Parameter search algorithms are generally easy to implement, but they often require
more computation time to find a good solution than the evolutionary and the
swarm intelligence algorithms. Grid Search and Random Search are brute force -like
methods for finding the suitable solution from defined search space. They rely on
searching the optimal solution from the whole parameter search space systematically
and randomly. Luus-Jaakola algorithm succeeds at keeping the implementation
simple while adding more intelligence to parameter searching. With LJ the optimal

2. THEORETICAL BACKGROUND 22

solution is searched randomly, as with RS, but the search space size is reduced during
optimization. Therefore the algorithm converges to small solution range or to one
solution, depending on the method implementation.

In contrast to parameter search methods, evolutionary algorithms and swarm intelli-
gence methods require more work at adapting them to the problem. The solution is
required to be represented as a solution candidate that can be modified in a way that
the method requires, for example moved in search space in PSO or mutated in GA.
Evolutionary programming methods are a bit more complex to implement because of
the number of the genetic operators. However, they often find a better solution faster
than GS or RS as they are utilizing information from previously evaluated solutions
in the search process. That said, finding a good solution quickly requires tuning
of the method hyperparameters and the result is not guaranteed even after that.
Swarm intelligence approaches utilize the same idea as evolutionary programming
for finding the optimal parameters from the parameter space. However, they do not
only rely on mutating existing solutions and generating new ones based on good
solutions, but search the parameter space with the same solution candidates just by
moving them around in search space with certain rules. Using solution candidates
to search the less likely solution areas of the parameter space makes evolutionary
algorithm and swarm intelligence methods more robust for finding a good solution.

23

3. METHOD FOR ROBOT AXIS TUNING

As stated in Section 2.3.4, there is no single parameter optimization method that
would be the best option for all optimization problems. If the resources would be
unlimited, brute force approaches such as GS and RS would be the solution, since
those methods are able to evaluate the fitness of all possible solutions and choose the
best. However, it is usually not the case with multidimensional optimization problems
and more sophisticated optimization methods should be used to get the result in a
reasonable time. To choose the optimization method the application and its features
and limitations should be investigated more closely. In this thesis, optimization
methods are used to adjust servo drive controller parameters to achieve the optimal
performance of OptoFidelity robot systems. Combination of the controller parameters
is called tune. The system is developed and tested with a typical servo axis hardware
used in OptoFidelity, which is described in more details in the following sections.
The optimization methods presented in the previous chapter require evaluating the
goodness of tune, which can be done by calculating performance index for each tune.
PID controller’s performance is used as the fitness function for the optimization
methods.

3.1 Test system description

To choose the tuning method and performance index to be used in this application,
the test system should be investigated from the respects of hardware, software and
controller. Since one objective is to create an autotuning system for OptoFidelity, a
test system was built with OptoFidelity hardware and software components. One
axis was used instead of a multi-axis robot to simplify the development and testing
processes. The test system was created for developing and testing the chosen
autotuning methods for this and the other parallel thesis work in [15].

3.1.1 Hardware

The hardware was chosen based on commonly used components at OptoFidelity.
From hardware point of view, the requirements for a test system were one degree of

3. METHOD FOR ROBOT AXIS TUNING 24

freedom with ability to accurately measure system movements. As the autotuning
system is planned to be utilized in the final products, it should be possible to
autotune axis controllers without additional sensors and measurement hardware.
The system consists of the three main parts: an actuator, a controller and a position
measurement device. All of the system hardware components are shown in Figure 3.1
and in more detais in Appendix A.

1 2

Figure 3.1 Test system hardware overview. Controller motherboard is marked with
1 and linear servo axis with 2.

The actuator of the test system is a linear servo axis typically used in OptoFidelity
robots. The other option would have been a ballscrew driven axis with rotary motor.
A linear motor was selected as target device of this project since OptoFidelity is
focusing more on linear motors in its robot platforms. The actuator consists of a
linear guide, a forcer, a carriage and magnets, all of which can be seen in Figure 3.2
where the actuator system is partially disassembled.

To provide feedback for the axis controller, an absolute linear optical encoder is
used. The resolution of optical encoders vary typically from 0.1 µm to 10 µm. As
this system is supposed to be the development platform, the most accurate encoder
available was used to get the most accurate results, which led to the selection of 0.1
µm encoder. The servo drive card can read the encoder signals, from which the axis
position is calculated. Position information is then utilized in position controller.
Axis velocity is calculated from position feedback and used in velocity controller. In
addition to components of the linear servo axis, the encoder can be seen in Figure 3.2
attached to carriage.

To test the autotuning performance more comprehensively with one axis, its dynamics
were required to be modifiable. The simplest way to modify the test system dynamics
was in this case to change its mass. Custom mass plates were manufactured to
achieve this. The mass plates in Figure 3.3 can be attached to axis one by one or
both at the same time. Two sizes of the mass plates were used to simulate different

3. METHOD FOR ROBOT AXIS TUNING 25

1

2

3
4

5

6

7

Figure 3.2 Test system actuator. Linear guide is marked with 1, forcer with 2,
carriage with 3, encoder reader with 4, magnets with 5, sliding blocks with 6 and
encoder stripe with 7.

Figure 3.3 Mass plates used for simulating different axis dynamics. Mass plate 1
on right and 2 on left.

robot hardware that could be attached to axis. The weights of the mass plates are
in Table 3.1.

However, during the preliminary test runs it was noticed that the axis maximum
current limit was reached when the both mass plates were attached to axis carriage
at the same time. To avoid breaking the hardware, only three different configurations
were used in testing: axis without an additional mass, with the mass plate 1 and
with the mass plate 2.

3. METHOD FOR ROBOT AXIS TUNING 26

Table 3.1 Mass plate weights.

Mass plate weight

1 1.8 kg
2 3.6 kg

The controller hardware is OptoFidelity product. The axis control board consists
of a servo drive card (Figure 3.4) and a motherboard (at left in Figure 3.1) that
can hold up to seven drive cards. Thus one motherboard can be used to control

Figure 3.4 OptoDrive servo driver card.

seven different servo axes synchronously just by installing drive controller cards to a
motherboard. Communication interface to motherboard is Ethernet port which is
commonly used in home and office networks.

Drive cards are multipurpose and can be used to control wide variety of electrical
actuators from open loop controlled steppers to closed loop controlled servos and
other electronic actuators up to 500 watts of power. Suitability for many different
electric actuators and control systems makes OptoDrive a reasonable choice for
developing robotics platforms and therefore also this autotuning system.

3.1.2 Software and controller

While the selected hardware allows executing movement and measuring feedback,
software is required for all of the controlling logic. In this system there are three
levels of the software. The lowest level is running on OptoDrive servo controller
card. Its task is to run all of the control loops and handle the interfaces to the axis
hardware and abstract the hardware interface for higher level software. The middle
level software handles communication between servo controllers and computers. A
proprietary serial interface is used to communicate with the servo controller card
to send commands and fetch system status. In addition to controlling axis, the

3. METHOD FOR ROBOT AXIS TUNING 27

serial bus commands can also write new parameters to servo drive. This feature
is utilized for example when axis motion controller tune parameters are changed.
The highest level implements the logic to create sequences of setting parameters,
for example axis speed and acceleration, and moving the axis to different locations
along pre-calculated paths. As the hardware is abstracted and axis movements are
handled by the servo controller and the serial bus commands, parameters and data
can be transferred utilizing existing communication libraries. Therefore this thesis
implementation focuses on the highest level of the software.

The logic of the system was developed using Python version 3.5.1. For data handling
and algorithm implementation, very commonly used NumPy and SciPy libraries [41]
were used. An existing communication library was used to communicate with axis
drive motherboard, which then forwards the messages to all servo drive cards. The
communication library supports commonly used TCP/IP protocol which makes it
easy to control with almost any commercial computer.

The system controller is a cascade PID controller described in 2.1. It consists of
three controllers in cascade: outermost controller being position controller, middle
one velocity controller and the innest control loop controls axis torque. The position
controller is a P-controller with a feed forward term. Integral and derivative actions
are not added to the position controller structure. To create a controller that
compensates steady state error, velocity controller has all PID actions, combined
with velocity and acceleration feed forward terms. Since the velocity controller has
integral action, even small position errors can be compensated and the system is able
to reach zero steady state error. The torque controller has P and I actions. The axis
driver software can calculate tuning parameters of torque controller automatically
based on resistance and inductance of the motor, so it is left out of the scope of this
thesis.

The controllers are digital and they are running in a loop with predefined controlling
frequency. In position and velocity controllers the frequency is 2500 Hz and the
torque control loop is running at 20000 Hz frequency. These are predefined values
and they cannot be changed without modifying the driver card firmware.

3.2 Tuning algorithm

The core of the automatic controller tuning system is the tuning algorithm. There is
no consensus of the most suitable stochaistic algorithm for PID controller tuning. It
needs to be selected by considering the properties and requirements of an application
in question. All of the presented learning based PID parameter tuning methods have
been tested mostly with simulations and not with real hardware. If the simulation

3. METHOD FOR ROBOT AXIS TUNING 28

model is made well and corresponds to the real system with disturbances, simulation
can be used to compare different tuning methods. However, a real system can have
additional disturbances, requirements and limitations compared to the simulation
model that need to be taken into account when selecting the tuning algorithm.

Tuning the robot’s servo drive controller is a one time task rather than a periodic
one. Therefore, time consumed for tuning one axis is not that important property of
autotuning system as long as the system is able to find the optimal tune without
manual operations. If controller tuning is an automatic process, it can take even
hours and the method would still be usable in commercial products. Faster tuning
would be beneficial but not required. More important is that the method can produce
good tunes repeatably. The autotuning system is required to generate a tune multiple
times with constant performance, which would reduce need for manual work in tuning
process. While the main advantage of an autotuning system is in removing expertise
and manual work, it is also desired to get better performance than with manual
tuning. In addition to aforementioned properties, the tuning process should be safe
for the hardware. For example, it should cause as little oscillations as possible to
prevent hardware failures. Also, safe movements of the axis should be enough to
provide necessary information for tuning. Therefore shorter and slower movements
are preferred over long or rapid movements in the tuning process.

Considering application requirements and the optimization algorithms presented in
Section 2.3, the selection of tuning algorithm is not obvious. Even though it would
be tempting to implement GS or RS to solve this problem, it would take too long
time to find the optimal values for seven parameters with a reasonable parameter
search resolution. Brute force approaches are left out for this reason. For these
methods the parameter ranges should be large enough to ensure that a good solution
is found, which leads to testing of many unsuitable parameter combinations. That
would cause vibrations and therefore could cause damage in the test system hardware,
which supports leaving out GS and RS tuning methods from the options. AGA
is an improved version of GA with automatic adjusting of mutation and crossover
probabilities, which is beneficial mechanism for the optimization method in the
context of PID controller tuning [18]. Therefore also GA was left out. That leaves
the three optimization algorithms: LJ, AGA and PSO.

LJ is the oldest of the three remaining algorithms. It is versatile, simple to implement
and able to find a good solution robustly if given enough time, which in this case
means shrinking the LJ parameter range slowly. Also the population size affects
the performance, speed and robustness of the method, but that is the same for all
algorithms and cannot therefore affect the selection. AGA is a more recent and
sophisticated optimization method that will adapt to the optimization situation
more than LJ. Its implementation is more complex compared to LJ and PSO and

3. METHOD FOR ROBOT AXIS TUNING 29

utilizing AGA requires tuning of the method hyperparameters. When considering
the autonomy of the autotuning system, tuning of hyperparameters makes system
less autonomous and tuning the algorithm itself requires expertise and manual
work. Genetic algorithms are also known as general but often inefficient methods
for parameter optimization (Section 2.3.2). PSO algorithm lies between these two:
it requires less hyperparameter tuning than AGA while still searching solutions
in a more intelligent way than LJ. In preliminary tests it was noticed that the
tuning process with PSO caused more oscillations on the axis than tuning with
LJ. In addition, there was no significant difference between the resulting controller
performance between these two methods in first tests. Therefore LJ was selected as
the autotuning method of this research.

Undesired oscillations were also encountered when the initial parameter ranges were
large enough to cover tuning axes with different dynamics. Amount of oscillations
during tuning were remarkably decreased by using Ziegler-Nichols (ZN) method to
get some initial tune and to calculate the initial parameter ranges. While tuning
the controller with ZN does not result in the best tune, it was noticed to give good
initial controller gains and often perform better than manual tuning [15]. However,
since the OptoDrive controller has parameters beyond ZN tuning capabilities, all of
the parameters cannot be optimized with ZN and the initial ranges and values needs
to be defined manually. These parameters are feed forward terms, and determining
their initial ranges will be discussed in more detail in Section 4.2.

3.3 Fitness function

The fitness function is a crucial part of the system optimization. Model-free optimiza-
tion methods are able to classify system behavior only through the fitness function.
For example, if the fitness is based on the maximum error, optimization methods
will not take any other features into account and the steady state error may remain
poor. In the PID controller context, minimizing the maximum error might seem a
good idea at first, but it does not consider oscillations or steady state erros at all.
On the other hand, if only oscillations would be minimized, it would result in a poor
solution: if the controller gives zero control signal, the system does not oscillate at
all, which would be considered as the ideal solution. However, the system would not
react to a setpoint, which clearly is not the desired behaviour.

When considering test robots for mobile devices, positioning accuracy is one of the
key properties. After the robot has moved to calculated position, all axes should stay
in their setpoints to achieve as accurate measurements as possible. Thus the steady
state error at the end of the movement should be as low as possible and axis should
not oscillate after moving to desired position. As the controllers are in cascade,

3. METHOD FOR ROBOT AXIS TUNING 30

velocity controller should not oscillate either to prevent position oscillations. The
velocity controller should minimize the error and oscillations in setpoint following task
to allow smooth movements of the axis. Minimizing the error in velocity controller
results in an accurate speed and well-known path of the axis. When considering
common applications of OptoFidelity robots, steady and robust movements are
required in swipe tests, where the movement itself is measured instead of path
endpoints. To get accurate measurements, axes should also be driven synchronously,
which requires accurate trajectory following of all robot axes.

To minimize the errors of controllers, using integrated error of performance test
movements is justified. All of the performance indices presented in Section 2.2
would therefore be suitable. The setpoint changes of the test system are not steps
but smooth transitions and controllers should be able to follow the setpoints as
accurately as possible during the whole transition. Therefore, time should not be
used as multiplier for error. As there are no big steps in the test system controller
setpoints, it is not necessary to reduce the weight of the errors at the beginning of
the movement. Considering that, there are two options, IAE and ISE. ISE minimizes
error peaks more efficiently than IAE because the error is squared. As the maximum
error should be minimized in robot test cases, ISE is the performance index of
choice. It is also widely used performance criteria when designing optimal control
systems [17]. For example, it is used along with ITSE and ISTE in [39] and also in
more recent research [43].

ISE has two major drawbacks that should be considered before employing it for
controller optimization. Setpoint step change creates a step to controller error, which
might result in ignoring smaller errors later in step response [44]. It can be avoided
by smoothing the controller setpoints to trajectories that the system is able to follow.
This is the case with OptoDrive servo drive controllers. The second drawback is that
even though ISE by design minimizes errors and utilizing it in controller parameter
optimization results in relatively small overshoot, steady state is not reached as
quickly as with time weighted performance indices [17]. However, that can even be a
desired property of fitness function, if trajectory following is as important as reaching
the setpoint. Considering the properties of the four presented performance indices
and the system, ISE is the most suitable performance index for this application.

31

4. IMPLEMENTATION AND TESTING

The methods selected in the previous chapter were implemented to test the methods
and their performance with the described test system. A standardized test protocol
was defined to get comparable results from different tuning methods. For compar-
ison, manual tuning tests were executed and performances measured in the same
test. The following sections present the test, detailed descriptions of the method
implementations, followed by results and comparisons.

4.1 Experimental test setup

To get comparable results for different tuning parameters, an axis performance test
was defined. It presents a common movement of the linear axis, which is in range
from 1 mm to 500 mm in OptoFidelity robots. In addition to the trajectory length,
also acceleration and velocity profiles were chosen based on typical use cases. The
trajectory is required to include acceleration, constant velocity and deceleration parts,
followed by axis stopping to position setpoint. Performance is measured from the
whole axis usage. Since the tested controller is digital, the gathered data gathered is
discrete and a suitable sampling frequency should be selected for the system. Higher
sampling rate results in more accurate data from axis movements. However, the
test system has a limited buffer size of 2048 samples for collecting data from one
movement. That limits the sampling frequency when whole movement is required to
be inspected. There are four parameters to be collected to calculate velocity and
position controller performances: setpoints and actual values of velocity and position.
That lowers the amount of samples from one parameter to 2048/4 = 512.

The defined test is a tradeoff between aforementioned properties. Longer movement
would allow higher acceleration and velocity to be used, but it would limit autotuning
system usage to axes with larger movements ranges. Shorter movement allows higher
sampling rate. Downside is that maximum velocity should be lowered to get enough
data from the constant velocity part of the movement as axis acceleration is limited
by maximum current of the servo.

During tuning process the axis controller will be unstable. Ziegler-Nichols tuning
process is based on finding critical controller gain. Learning based approaches search

4. IMPLEMENTATION AND TESTING 32

also unstable parts of the tuning parameter search space to find the globally optimal
parameter values. With longer movements and higher velocity and acceleration
unstable controller tune can cause more damage than with lower values.

The following values were selected empirically: axis movement of 5 mm, velocity of
50 mm/s and acceleration of 1000 mm/s2. To collect data from the trajectory, the
sampling rate was limited to 2500 Hz. The selected trajectory for axis position is
presented in Figure 4.1a. Velocity profile of the trajectory is visualized in Figure 4.1b.

0.00 0.05 0.10 0.15 0.20

0

1

2

3

4

5

Time [s]

P
os
it
io
n
[m

m
]

(a) Position trajectory

0.00 0.05 0.10 0.15 0.20

0

20

40

Time [s]

V
el
oc
ity

[m
m
/s
]

(b) Velocity trajectory

Figure 4.1 Ideal position and velocity trajectories of the test setup.

For every test tune, the described test is executed six times: three runs to both
directions. Mean values of position and velocity controller performance indices
from all six runs were used in tune performance evaluation. Velocity and position
trajectory errors from one test run are visualized in Figures 4.2 and 4.3. Resolution
of the velocity controller is clearly visible in velocity tracking error plot in Figure 4.2.
As the encoder resolution is 0.1 µm and the controller run at 2500 Hz frequency, the
resulting velocity resolution is 0.25 mm/s.

4. IMPLEMENTATION AND TESTING 33

0.00 0.05 0.10 0.15 0.20

−3

−2

−1

0

1

2

3

Time [s]

V
el
oc
ity

er
ro
r
[m

m
/s
]

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

Figure 4.2 Velocity error during six sample test movements.

0.00 0.05 0.10 0.15 0.20

−3
−2
−1
0

1

2

3

4

5

Time [s]

P
os
it
io
n
er
ro
r
[µ
m
]

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

Figure 4.3 Position error during six sample test movements.

4. IMPLEMENTATION AND TESTING 34

4.2 Implementation

Luus-Jaakola -parameter optimization method was implemented with ISE perfor-
mance index as the fitness function. Python was used in the autotuning system
implementation. It is the most used programming language within OptoFidelity and
the OptoDrive axis controller library has a Python wrapper. In addition to that,
Python has numeric and scientific calculation libraries NumPy and SciPy [41] that
were utilized in data analysis in this project. The defined automatic tuning sequence
is presented in Figure 4.4.

Start

Initial tuning
with Ziegler-Nichols

Tune velocity
controller

Tune position
controller

Fine tune
both controllers

Evaluate system
performance

End

Start

Use given
initial tune

Create new
tune LJ-population

Test tunes
in population

Select population’s
best tune

Reduce parameter
ranges

Set new
initial tune

Iteration count
reached?

Select the best
tune of all

End

yes

no

Figure 4.4 Automatic tuning flowchart. Luus-Jaakola optimization method is used
for all tuning steps.

The tuning sequence was inspired by the manual tuning process. When tuning
controllers in cascade, the controllers cannot be fully separated. Therefore, as often
in manual tuning, the velocity controller is tuned first and position controller is
tuned after the velocity controller gains have been found. As the previously tuned
velocity controller is tuned with input from suboptimally tuned position controller,
it is required to be tuned again with new position controller. However, after that

4. IMPLEMENTATION AND TESTING 35

the position controller would be tuned with suboptimal velocity controller. To break
the loop of tuning both controllers alternately and get the controllers tuned properly
together, they are fine tuned simultaneously. That allows optimization algorithm to
fit them together without problem of tuning other controller with a suboptimally
tuned adjacent controller.

4.2.1 Performance index

The chosen performance index ISE was implemented for both the velocity and
position controllers. The software generates a CSV file from the data gathered from
the axis movements so the data handling is straightforward with NumPy-library of
Python. Required data for calculating ISE consists of position and velocity setpoints
and actual values, each of these as a column in a CSV file.

The data collected from the axis is scaled by the servo drive firmware and data
downloaded from drive requires re-scaling to get SI-units. However, the correct
scaling factors for both position and velocity data can be queried from the drive. For
discrete data, the Equation 2.4 for ISE can be written as

ISE =
M∑
t=0

e(t)2 (4.1)

where M is the number of data points in one column of the resulting CSV file. As
can be seen from the equation, ISE is simple to implement and fast to calculate.
Performance index is calculated for both position and velocity errors.

4.2.2 Optimization method

Luus-Jaakola optimization method was implemented to tune the controllers. LJ-
algorithm was implemented with slight modifications to fit for OptoDrive PID
controller tuning. Tuning sequence was created to follow the order of manual tuning
sequence, where controllers in cascade are tuned from inside out. Sequence is
presented in Figure 4.4. Unlike in manual and model based tuning, all of controller’s
parameters are taken into optimization process.

The test system sets limitations to parameter values. Only the position controller
feed-forward term uses floating point numbers. The six other controller parameters
are integers, which leads to rounding and loss of accuracy. Also, all parameter values
are non-negative. LJ parameter optimization method does not naturally limit the
parameter types, ranges, or values and therefore application specific limitations were

4. IMPLEMENTATION AND TESTING 36

implemented. Optimization algorithm is not modified, but the output values are
validated and modified if necessary according to the limits. Negative parameter
values are interpreted as zeros and integer type parameters are rounded to the nearest
integer after LJ-iteration. The position controller feed-forward term is an exception
and it is handled as a floating point number.

Initial values of the position controller P-gain and velocity controller PI-gains are
gathered with the ZN-tuning algorithm. The position feed-forward term unit is
percents and it is by default 100.0, which ideally forwards position errors directly
to the velocity controller. The rest of the parameters are initialized to zero values.
LJ-method also requires parameter range for each of the parameters. The parameters
are not normalized to a same scale and therefore the same range cannot be used
for all. For parameters initialized with ZN, the range was selected to depend on
the parameter initial value. Other parameter ranges were selected manually for this
controller.

The initial range was selected to be a parameter value itself. In practice, the initial
value for the parameter is chosen randomly from the range [0.75x; 1.25x], where x is
the initial value of the parameter. Bigger [0.5x; 1.5x] and smaller [0.9x; 1.1x] initial
ranges were also tested. The smaller range was faster to converge, but it limits the
optimization search space and is more likely to converge to a local optimum. In
contrast, the bigger range allows a larger search space which improves the changes to
avoid local optimums. However, it is slower to converge, and will cause oscillations in
the axis during the tuning process due to unsuitable controller gains. Optimization
of the initial ranges remains as a future work.

Table 4.1 Initial parameter values for automatic tuning with LJ.

Parameter Initial value Initial range size

Position Kp x1
1 [0.75x1; 1.25x1]

Position FF 100.0 [99.0; 101.0]
Velocity Kp x2

1 [0.75x2; 1.25x2]
Velocity Ki x3

1 [0.75x3; 1.25x3]
Velocity Kd 0 [0; 50]
Velocity FF 0 [0; 20]
Acceleration FF 0 [0; 20]

The minimum range size is set to 2 to allow small modifications also in last iterations
of optimization as the values are handled as integers. Initial values and ranges are
collected to Table 4.1.

Luus-Jaakola optimization method reduces the parameter ranges in every iteration
with a predefined multiplier. In this work, the value 0.75 was selected to decrease the

1Initial value from tuning created with Ziegler-Nichols-method.

4. IMPLEMENTATION AND TESTING 37

parameter ranges fast to achieve reasonable run times in tests. With 20 iterations,
the last iteration’s region size is 3.17 % of the original range.

The test setup presented in Section 4.1 is used to collect the data and evaluate tune
performance during the optimization process. Axis movement is alternated between
positive and negative directions during testing to acquire data from the both moving
directions. Other benefit from altering movement directions is speeding up the tuning
process, since the axis is not moved to zero position after every measurement.

4.3 Results

Measurements were carried out to compare different tuning methods. Hypothesis
was that automatic tuning results in more predictable controller performance than
manual tuning, and also better absolute performance.

4.3.1 Manual tuning

Manual tuning performance results are required to evaluate goodness of automatic
tuning algorithm. For comparison between performances achieved with the manual
and automatic tuning, five experts at OptoFidelity were requested to create a tune
for the axis presented in Section 3.1.1. Tuning was completed three times with each
test subject: one without added weight, one with the plate 1 and one with the plate
2. The testing plan is in Appendix B. Before the experiments, the axis parameters
were initialized to the default values that are able to move the axis. Default values
were searched by rising the position controller P-gain and velocity controller P- and
I-gains gradually, which is a very fast method to find approximate values, but will
result in poor performance. Initial values of the parameters are listed in Table 4.2.

Table 4.2 Initial controller parameter values for the manual tuning experiments.

Parameter Initial value

Position Kp 100
Position FF 100
Velocity Kp 100
Velocity Ki 100
Velocity Kd 0
Velocity FF 0
Acceleration FF 0

Manual tuning was performed with four parameters that are tuned in commercial
robots of OptoFidelity. From position controller, the proportional gain and feed-
forward parameters were used. The velocity controller proportional and integral

4. IMPLEMENTATION AND TESTING 38

gains were the other two parameters. Rest of the parameters were left to their initial
values (0) where they do not affect the performance.

It took from half an hour to one and half hours for one subject to tune the axis
controller with each of the three weights. The first tuning took the longest time
because the axis was new for the subjects. Subjects were allowed to use the previous
tune as the basis for the next tunes, which decreased the system tuning time in
the next rounds. Subjects’ comments were recorded during the test. One comment
describes industrial controller manual tuning process:

"There are no processes for this [tuning]. Or there is, but who has time
to learn them."

That comment strengthened the hypothesis that automatic tuning is beneficial.

Velocity controller
0

100

200

300

400

500

V
el
oc
it
y
IS
E

Mean

Position controller
0.00

0.01

0.02

0.03

0.04

0.05

P
os
it
io
n
IS
E

Mean

Figure 4.5 Box plots of manually tuned controllers’ performances.

The result tuning parameters from all experiments can be found from measurement
log in Appendix C. Summary of results is presented in Figure 4.5 as boxplot.

4.3.2 Automatic tuning

The implemented autotuning system was tested with the same axis configurations
as manual tuning. Axis controllers were tuned ten times with each of the mass
configurations, totaling 30 test runs. Running one tune test movement, including
setting new parameters, running the test movement, collecting data and analysing
it, took less than one second. With the selected LJ-population size of 20 and
iteration count of 20, one tuning run lasts approximately 20 × 20 × 1s = 400s.
As there are three tuning steps, one full controller tuning sequence takes total of
400s× 3 = 1200s = 20 minutes.

4. IMPLEMENTATION AND TESTING 39

It is not guaranteed that the last iteration would have the best performing individual
tune, because in LJ optimization the best performing tune is not stored for next
generation. Therefore tune that resulted in the best performance during the whole
tuning process is considered as the result of tuning round, not the best tune of the
very last generation.

Velocity controller tuning

Velocity controller is the inner one in the cascade controller and therefore it is tuned
first. Velocity ISE was used as the fitness function for this LJ-optimization step. The
position controller was tuned with ZN-method once with each configuration, and the
same position controller tune was used in the mass plate configuration during velocity
controller tuning. The optimization path from one velocity controller tuning run is
presented in Figure 4.6. Y-axis scale is velocity controller ISE-performance index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100

200

300

400

500

600

700

Generation number

V
el
oc
ity

IS
E

Best ISE
Mean ISE

Best: 110.9

Figure 4.6 Velocity controller performance over the generations.

and X-axis consists of 20 tuning generations. Best velocity controller performance
of each generation is plotted along with generation’s mean performance. Smaller
ISE-value is better and the figure shows that the performance is getting better during
the tuning iterations. The best performance values of generations are converging to
optimum around the fifteenth generation. Mean performance of the each generation

4. IMPLEMENTATION AND TESTING 40

also approaches the best performance. From the data it is clear that 20 generations
is enough to optimize this system.

The resulting velocity controller tuning parameters and ISE-performance index values
are in Appendix D. Because the position controller was not tuned, only the velocity
controller performances were measured. Measurements are divided to three tables
based on mass plate configuration: D.1, D.2, and D.3. It should be noted that the
velocity controller ISE values were measured with only one axis movement with
corresponding controller tune. Tune producing the best performance is selected for
the next tuning steps.

Position controller tuning

Position controller is the outer loop of the servo drive cascade controller and is thus
tuned after the velocity controller. When the inner controller performs optimally,
it produces the minimum amount of disturbance and error to outer controller.
Therefore the starting point for position controller optimization is the ZN-tuned
position controller and LJ-tuned velocity controller. Position ISE was used as the
fitness function. The optimization path from one position controller tuning run is
presented in Figure 4.7. Y-axis is position controller ISE-performance and X-axis is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3

4

5

6

7

8

9

·10−4

Generation number

P
os
it
io
n
IS
E

Best ISE
Mean ISE

Best: 3.58× 10−4

Figure 4.7 Position controller performance over the generations.

4. IMPLEMENTATION AND TESTING 41

the generation index of the optimization process. Figure 4.7 shows that only a few
generations from the beginning of the LJ-optimization improved the performance.

The position controller tunes and performance index values are in Appendix D. They
are divided to Tables D.4, D.5, and D.6 based on mass configurations.

Fine tuning of the both controllers

After the both controllers were tuned individually, they were fine tuned together.
This was done because velocity controller gets its setpoint from the suboptimally
tuned position controller during the first tuning round. Then, the velocity controller
parameters change, also the position controller should be re-tuned for optimal
performance. Therefore it is reasonable to tune the controllers together.

Since the system output is the axis position, the position ISE is used as the perfor-
mance index in fine tuning process. Optimization path of one fine tuning is presented
in Figure 4.8. In this case, the best tune was found from the fourteenth generation,
while the generation mean ISE optimum location was achieved in twelfth generation.
Again, 20 generations proved to be enough to converge with the implemented method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

·10−4

Generation number

P
os
it
io
n
IS
E

Best ISE
Mean ISE

Best: 2.49× 10−4

Figure 4.8 Position controller performance during Luus-Jaakola tuning of the both
controllers.

4. IMPLEMENTATION AND TESTING 42

The resulting tunes and position and velocity ISE performance values are in Ap-
pendix D in Tables D.7, D.8, and D.9.

Fine tuning with the modified fitness function

Even without further analysis, it is clear from the final tuning performance that
velocity controller performance was significantly decreased after the position controller
tuning and fine tuning of the both controllers. Because only the position ISE
was used as perfromance index in the position based optimizations, the velocity
controller performance can decrease as long as it does not harm the position controller
performance. It is also possible that the position controller would compensate errors
in the velocity controller, which can lead to decent position controller performance
but decreased velocity controller performance. In that case there is a risk that with
a different trajectory, the controllers would not work together as desired. Therefore
it is reasonable to use both the position and velocity ISE values when fine tuning
the controllers.

Different controller ISE values should be scaled to the same magnitude to utilize both
of them in the optimization process. Currently, position ISE values are in magnitude
10−4 and velocity ISE values in magnitude 102. If they are summed without scaling,
it is clear that the velocity ISE would lead the optimization and position ISE would
have effect close to nothing. To get the magnitudes to the same scale, position ISE
values were multiplied by 106 during the optimization. The new ISE value for fine
tuning fitness function is in Equation 4.2.

ISEcombined = λ× ISEvel + (1− λ)× 106 × ISEpos, (4.2)

where λ is a hype parameter from the range (0, 1). When λ = 1.0 only velocity
ISE is used. Respectively, when λ = 0.0, the optimization is based on position ISE.
Relative weights of position and velocity ISE are application dependent. Initial value
λ = 0.5 was selected for this work. In future applications, it should be adjusted
based on the application requirements.

One optimization path with new fitness function that considers both controllers’
performances is presented in Figure 4.9. The best tune was found after thirteen
generations.

Tuning with modified fitness function was executed three times for each mass plate
configuration. The tuning parameters and corresponding performance results are in
Appendix D in Tables D.10, D.11, and D.12.

4. IMPLEMENTATION AND TESTING 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100

200

300

400

500

600

700

800

900

Generation number

C
om

bi
ne

d
IS
E

Best ISE
Mean ISE

Best: 177.0

Figure 4.9 Combined controller performance during Luus-Jaakola tuning of both
controllers, λ = 0.5.

4.3.3 Optimized ZN tuning

During the automatic tuning system development it was noted that the automated
tuning with the population based parameter optimization method is too slow with
real hardware. It was quickly noticed that when one tune evaluation takes one second,
the iteration count and population size are very limited. When the measurements
for the thesis of Juha Koljonen [15] were executed parallel with this thesis, they were
found to be significantly faster to execute. Therefore, the model based tuning method
was adjusted to produce the same tunes and performance than LJ-method. The new
method for adjusting model based tuning methods was named Koljonen-Heinänen
(KH) method.

At the time of developing this sequence, Adaptive Genetic Algorithm was used for
controller tuning. However, most important is that the coefficients used by the model
based PID controller tuning are adjusted based on the iterative method results,
regardless of the iterative and model based methods. The flowchart of adjusting
model based tuning method with KH method is in Figure 4.10.

At first, the test system is tuned once with iterative method. The result is used to
adjust the parameters of the model based tuning method. In case of ZN-method,

4. IMPLEMENTATION AND TESTING 44

Start first run
for a new system

Find optimal tune
with iterative method

Calculate new
parameters for

model based method

Store modified
parameters

End

Run once for a new
PID controlled system type.

Start tuning
PID controller

Find system characteristics
required by model
based method

Calculate tune
using characteristics and
optimized parameters

End

Run for every PID controlled
system with same type.

Figure 4.10 KH method flowchart.

modified parameters are coefficients of controller’s critical P-gain and critical oscil-
lation’s period (Table 2.2). In short, the KH method adjusts model-based tuning
methods to produce as good performance results as the optimization based methods.
Novelty research has been done and patenting process is ongoing for the KH-method.
Controller tuning and performance measurements with the new ZN-KH variant
were conducted with the same test system in [15] and used in the tuning method
comparisons.

4.4 Result analysis

The tuning performances were compared by calculating the mean values (µ) and
standard deviations (σ). The mean value of performance index describes the expected
performance of system when it is tuned with a specific method. On the other hand,
the mean performance is not sufficient to represent the goodness of tuning method
as the same average performance can be achieved with very different performance
distributions. The population standard deviations were calculated to describe the
repeatability of the tuning method. The lower the standard deviation, the more
similar performance the tuning method produces in consecutive tuning iterations.
It should be noted that as the velocity and position units are different, the ISE
performance values of the controllers are not comparable to each others.

4. IMPLEMENTATION AND TESTING 45

Only the final tune performance is measured in the case of manual tuning. Automatic
LJ based tuning was completed in three stages and performances are presented after
each stage. The most significant result is the controller performance after all three
tuning stages. It is compared to results from manual tuning tests.

Two-sample Kolmogorov-Smirnov test (K-S test) [11] is utilized to deteremine the
statistical significance of performance differences. It is a statistical method for
testing if two empirical samples are drawn from the same distribution. The test
compares sample cumulative distribution functions and expects the distributions to
be continuous. The test is nonparametric and it considers both location and shape
of the cumulative distribution function curves. Also, K-S test does not require test
samples to be normally distributed. Therefore it is suitable for the experiments of
this work.

4.4.1 Manual tuning

Statistics in Table 4.3 are calculated based on the manual tuning data in Appendix C.

Table 4.3 Manual tuning performance average and standard deviation.

Mass configuration µPos ISE (×10−4) σPos ISE (×10−4) µVel ISE σVel ISE

No mass plate 149.28 166.28 200.8 130.7
Mass plate 1 79.72 73.14 215.7 146.6
Mass plate 2 70.36 67.93 194.9 59.6

All 99.79 117.38 203.8 118.8

Manual tuning performances are the base values that automatic tuning performances
are compared to. As can be seen in Table 4.3, the standard deviations are in the same
magnitude as mean values. An ideal controller would have ISE values of zero and
negative values are not possible, which means that performance index is distributed
more to above the average of the data. For velocity performances standard deviations
are about half of the mean values. While velocity controller performance remains
almost the same regardless of the added mass plate, position controller performance
gets better along the added mass. It indicates that the system with added mass is
less sensitive, which makes it easier to tune manually.

4.4.2 Automatic tuning

To review the full automatic tuning process, the resulting tune performances from
all three stages are presented in the tuning order. Velocity controller tuning results

4. IMPLEMENTATION AND TESTING 46

are presented first, followed by the position controller tuning results, and finally the
fine tuned controller performances.

Velocity controller performance

Statistics in Table 4.4 are calculated based on velocity controller tuning data in
Appendix D.

Table 4.4 Velocity controller performance. Tuning stage 1.

Mass configuration µVel ISE σVel ISE

No mass plate 137.7 15.1
Mass plate 1 109.9 4.0
Mass plate 2 113.1 9.2

All 120.2 16.3

After autotuning the velcoity controller, it can be seen that the controller’s perfor-
mance is better than manually tuned velocity controller. Average performance index
value decreases to half of the manually tuned. In addition, the standard deviations
decreased significantly, as it is about one seventh of manually tuned controller’s. Best
performance was achieved with mass plate 1. With that configuration the standard
deviation was below 3 % of the corresponding manual tuning value.

Position controller performance

The statistics of the resulting position controller performance are collected to Table 4.5
from position controller tuning data in Appendix D.

Table 4.5 Position controller tuning performance. Tuning stage 2.

Mass configuration µPos ISE (×10−4) σPos ISE (×10−4)

No mass plate 4.62 0.81
Mass plate 1 3.58 0.39
Mass plate 2 3.75 0.48

All 3.99 0.75

Position ISE, the system final performance value, is significantly lower than manual
tuning performances in Table 4.3. The mean value is under one tenth, and the
standard deviation is 100 times smaller than corresponding manual tuning values.

4. IMPLEMENTATION AND TESTING 47

Fine tuned controllers’ performance

The statistics of final LJ-tuning performance are calculated based on the fine tuning
data in Appendix D and presented in Table 4.6.

Table 4.6 Means and standard deviations of LJ-tuned controllers. Tuning stage 3.

Configuration µPos ISE (×10−4) σPos ISE (×10−4) µVel ISE σVel ISE

No mass plate 5.05 0.93 360.5 103.3
Mass plate 1 3.55 0.57 245.0 52.0
Mass plate 2 3.37 0.77 234.5 108.8

All 3.99 1.08 280.0 108.0

It is clear that the worst performance values were again measured without the
additional mass. In contrast, the measurements with mass plate 1 resulted in same
or better performance and smaller variation than other mass configurations. After
the last tuning stage, the performance of the position controller is significantly better
than the results from manual tuning. The velocity controller performance is worse
than after the first tuning step or manual tuning as the mean ISE values are up to
2.6 times higher. Standard deviations of the velocity controller performances are in
the range of standard deviations of the manual tuning results.

Modified performance index fine tuned controllers’ performance

Statistics from third tuning stage ran with the combined ISE fitness function are
calculated from data in Appendix D and collected to Table 4.7.

Table 4.7 Means and standard deviations of LJ-tuned controllers. Combined ISE
performance index was used in last tuning step.

Configuration µPos ISE (×10−4) σPos ISE (×10−4) µVel ISE σVel ISE

No mass plate 4.69 0.89 255.6 11.3
Mass plate 1 2.98 0.17 178.7 11.1
Mass plate 2 3.24 0.33 147.4 19.6

All 3.63 0.93 193.9 47.7

There are slight improvements in all of the final tuning results when the combined ISE
was used. The standard deviations of velocity controller performances of individual
mass configurations decreased 80-90 %. Also, the means and standard deviations
from all measurements combined are decreased. That indicates more repeatable
tuning with better performance results.

4. IMPLEMENTATION AND TESTING 48

4.4.3 Performance comparison

Performances of the position and velocity controllers achieved with different methods
are compared next. First, the results from Luus-Jaakola optimization with different
fitness functions are compared to determine which one is the most suitable for this
application. After that the best results from automatic tuning are compared to
manual tuning and KH-modified ZN-tuning in [15].

From the presented statistical values it is seen that adding mass to the axis lowers
ISE values of the both controllers. However, results with mass plate 1 are generally
better than results with mass plate 2. There is no direct correlation between the
additional mass and controller performance. Therefore the measurement results from
all mass configurations are combined together and comparison between methods is
made with the overall mean and standard deviations. Performance measurements are
compared with two-sample Kolmogorov-Smirnov test that does not assume normally
distributed samples.

Luus-Jaakola tuning comparison

The main concern in combining the ISE values for the final tuning step was that
velcoity ISE could decrease the position ISE. The box plots of Luus-Jaakola tuned
controller performances are in Figures 4.11a and 4.11b.

LJ LJ, combined ISE
100

200

300

400

500

600

V
el
oc
it
y
IS
E

Mean
Mean

(a) Velocity controller performance.

LJ LJ, combined ISE

3

4

5

6

7
·10−4

P
os
it
io
n
IS
E

Mean
Mean

(b) Position controller performance.

Figure 4.11 Box plots of the controllers fine tuned with the position ISE and the
combined ISE.

All means, medians and standard deviations of performances are smaller from the
controllers that are tuned with the combined ISE. As position is the final output of

4. IMPLEMENTATION AND TESTING 49

the axis, the hypothesis was that completing final tuning with position ISE would
give the best results. The results shows otherwise. When the combined ISE is used
the resulting velocity controller performance standard deviation decreased 56 % and
mean value 31 % compared to tuning with only the position ISE value.Also, the best
individual results for velocity controller were achieved by utilizing combined ISE. The
effect is not as strong with the position controller, where mean decreased 9 % and
standard deviation 13 %. Position controller best results were measured when only
the position ISE was used as expected. Contrary to intuition, using also the velocity
ISE in the final tuning stage reduced also standard deviation of position controller
ISE. It shows that when the velocity controller is more accurate also the position
controller performs better. Robustness of a tuning method is in this case preferred
over the occasional top results. Therefore the results from LJ with combined ISE
are selected for comparison between the manual and automatic tuning.

Automatic and manual tuning comparison

Two types of automatic tuning tests were conducted and the results are compared
to manual tuning. ZN-KH tuning outperformed other model based tuning methods
in [15] and therefore it is the only model based tuning method in comparison. The
results from the manual tuning, ZN-KH and LJ with combined ISE are collected to
Table 4.8 for easier comparison.

Table 4.8 Final comparison. Means and standard deviations of automatic and manual
tuning methods.

Tuning method µPos ISE (×10−4) σPos ISE (×10−4) µVel ISE σVel ISE

Manual tuning 99.79 117.38 203.8 118.8
ZN-KH 10.90 2.02 164.5 16.8
LJ combined ISE 3.63 0.93 193.9 47.7

The data shows that the automatic tuning brings significant increase to the position
controller performance. The mean position ISE with ZN-KH tuning is only 11
% of manual tuning, so the position ISE value has decreased by almost order of
magnitude. With LJ tuning, the position ISE decreased to one third of the ZN-KH
result. Same effect is seen in the standard deviations, where ZN-KH tuning position
performance’s standard deviation is 1.7 % of the manual tuning. LJ tuning position
ISE standard deviation is 46 % of ZN-KH value, which means over two orders of
magnitude difference to the manual tuning value.

Velocity controller performance does not improve as much as the position controller.
ZN-KH mean ISE decreased by one fifth from manual tuning . LJ tuning improved
manual tuning by 5 %. Significance of this change is calculated below. The standard

4. IMPLEMENTATION AND TESTING 50

deviation of velocity ISE from ZN-KH tuning is only 14 % of manual tuning per-
formance standard deviation, which means more repeatable tuning of the velocity
controller. With LJ velocity controller tuning, the standard deviation is 60 % smaller
than with manual tuning. ZN-KH method is therefore more repeatable for tuning
velocity controller, as the standard deviation is only one third of value from LJ
tuning.

Two sided two-sample Kolmogorov-Smirnov test is used to check if the performance
values from different tuning methods are from the same or different distributions. The
null hypothesis is that the both samples are drawn from the same distribution. The
probabilities of the results being measured from the same distribution are collected
to Table 4.9.

Table 4.9 Kolmogorov-Smirnov test probabilities that two tuning performance results
are drawn from same distribution.

Tuning methods Position controller [%] Velocity controller [%]

Manual vs. ZN-KH 1.5×10−4 5.9
Manual vs. LJ combined ISE 0.1×10−4 30.8
LJ combined ISE vs. ZN-KH 5.6×10−8 5.9

Probabilities of position controllers are very low for all tuning combinations, so all
null hypotheses can be rejected. Therefore all three results are drawn from different
distributions. The velocity controller case is not as clear as the position controller,
as the probabilities are quite high. There is 5.9 % chance that manual tuning results
and ZN-KH results are from the same distribution. Same probability is for LJ and
ZN-KH results to be drawn from same performance distribution. With probability
of 30.8 % it is quite likely that the LJ and manual tuning are equally good for
velocity controller tuning. With the current information, the null hypothesis cannot
be rejected and velocity controller performance is considered to be the same for all
tuning methods.

4.5 Discussion

Based on the work results, test system can be tuned with iterative, learning based
optimization methods. In addition to ideal PID controller parameters, also other
test system specific controller parameters were successfully optimized. Considering
the manual tuning measurements, there is a clear need for autotuning system for
OptoDrive servo controller. Luus-Jaakola method selected from literature was
proved to be suitable for autotuning both the velocity and position controllers. LJ
method was able to produce tunes with consistent performance robustly in constant
time. Automatic tuning adjusted controller parameters for different axis dynamics

4. IMPLEMENTATION AND TESTING 51

successfully. The developed tuning system has potential to reduce the resource
needs of axis tuning significantly. In the best case OptoFidelity will save worldwide
travelling by automating the tuning sequence instead of sending an tuning expert to
the customer premises to adjust the controller parameters.

The performance of tuning method surpassed the expectations by decreasing the
mean position controller ISE by 96 % and standard deviation over 99 %. The velocity
controller performance did not significantly change according to Kolmogorov-Smirnov
test. In addition to implementing and testing the LJ autotuning method also a novel
method for adjusting the model based tuning method to produce similar performance
results was developed in cooperation with Juha Koljonen. The position controller
tuned with ZN-KH method had slightly worse performance than the purely LJ tuned
controller. Tuning time however is dropped significantly as ZN tuning requires only
searching critical gain of the controller once. Also, model based ZN tuning cannot
utilize all parameters of the controller which is assumably one reason for it to produce
lower performance than the LJ method. The velocity controller performance achieved
with the ZN-KH was actually better than performance of the LJ tuned controller.
However, according to Kolmogorov-Smirnov test there is about 6 % chance that the
performance distributions are not different, so superiority of ZN-KH method cannot
be guaranteed.

In conclusion, ZN-KH method is the recommended method for OptoFidelity robot
axis tuning when considering large amounts of robots. It is a fast tuning method and
can produce consistent tunes whose performance is better than manual. For a small
amount of robots, LJ method with final tuning completed with combined position
and velocity ISE values is recommended, as it can utilize all controller parameters
and therefore produced slightly better axis performance. LJ tuning sequence will take
longer time than the model based tuning, and as it is searching the very optimum of
the axis tune, optimization process is likely to cause some axis oscillations during
the process.

The future work should be concentrated firstly on the fitness function of the optimiza-
tion process. The selected ISE performance index is widely used in PID controller
performance measurements, but it is not necessary the ultimately best fitness func-
tion for the servo drive case. As noticed in this work, combining different fitness
functions can provide better results than utilizing single performance measurement.
To find the optimal fitness function the desired and undesired properties of axis
behaviour should be investigated more closely. For example, to prevent oscillations on
undesired frequencies, the fitness function could utilize a frequency representation of
the trajectory error. After finding the important properties they should be weighted
so that the fitness function would be a compromise between them for each application.
In addition to the fitness function, the current LJ method implementation could

4. IMPLEMENTATION AND TESTING 52

be optimized by modifying the iteration count, population size and initial ranges.
Alternatively, additional optimization methods such as Simulated Annealing and
Differential Evolution could be used.

53

5. CONCLUSION

The targets of this thesis were to study nonlinear, discrete, learning based optimization
methods for PID controller tuning to OptoFidelity OptoDrive. To provide a baseline
for controller performance measurements, manual tuning tests were conducted. After
selecting the best suitable method from the surveyed optimization methods and
performance indices, the tuning and performance measurements were experimentally
compared to manual tuning. The results showed that the automatic tuning with
Luus-Jaakola method produces not only significantly better tunes for controllers,
but also more repeatably and in the same or even less time than manual tuning.
Expectations for model free autotuning method were surpassed and optimization
search based tuning of OptoDrive controllers is the recommended option for individual
robots. The results of the learning based methods were used to adjust the traditional
model based Ziegler-Nichols method to produce nearly similar performance results.
New, modified ZN tuning method is recommended to be used in a mass production
where tuning time is one key resource. The method for adjusting the model based
methods for a new controller is in patenting process.

The new OptoDrive auto-tuning system will be important part of the company’s
toolbox as it frees the resources from tuning to more important tasks. While the
system is still under development and it still requires integration work to be user-
friendly automatic tuning software, the tuning logic is implemented and tested to
replace manual tuning. In addition to increased performance and less time in robot
tuning at OptoFidelity, the optimization can be used in marketing of the products.
These features will give OptoFidelity competitive advantage in the field of test
robotics.

54

REFERENCES

[1] Bambang Argo et al. “Optimization of PID Controller Parameters on Flow Rate
Control System Using Multiple Effect Evaporator Particle Swarm Optimization”.
In: International Journal on Advanced Science, Engineering and Information
Technology 5 (Apr. 2015), p. 62.

[2] K. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning.
Vol. 2. Instrument society of America, Research Triangle Park, NC 27709, 1995.
isbn: 1-55617-516-7.

[3] K.J. Åström and T. Hägglund. “The future of PID control”. In: Control Engi-
neering Practice 9.11 (2001), pp. 1163–1175. issn: 0967-0661. doi: https://
doi.org/10.1016/S0967-0661(01)00062-4. url: http://www.sciencedirect.
com/science/article/pii/S0967066101000624.

[4] James Bergstra and Yoshua Bengio. “Random Search for Hyper-parameter
Optimization”. In: Journal of Machine Learning Research 13 (Feb. 2012),
pp. 281–305. issn: 1532-4435. url: http://dl.acm.org/citation.cfm?id=
2188385.2188395.

[5] Zafer Bingul. “Adaptive genetic algorithms applied to dynamic multiobjective
problems”. In: Applied Soft Computing 7.3 (2007), pp. 791–799. issn: 1568-
4946. doi: https://doi.org/10.1016/j.asoc.2006.03.001. url: http:
//www.sciencedirect.com/science/article/pii/S1568494606000251.

[6] Terrence L. Blevins. “PID Advances in Industrial Control”. In: International Fed-
eration of Automatic Control Proceedings Volumes 45.3 (2012), pp. 23–28. issn:
1474-6670. doi: https://doi.org/10.3182/20120328-3-IT-3014.00004. url:
http://www.sciencedirect.com/science/article/pii/S1474667016309946.

[7] M. Dorigo and L. M. Gambardella. “Ant colony system: a cooperative learn-
ing approach to the traveling salesman problem”. In: IEEE Transactions on
Evolutionary Computation 1.1 (Apr. 1997), pp. 53–66. issn: 1089-778X. doi:
10.1109/4235.585892.

[8] Gregory Hornby et al. “Automated Antenna Design with Evolutionary Algo-
rithms”. In: Collection of Technical Papers - Space 2006 Conference 1 (Aug.
2006). doi: 10.2514/6.2006-7242. url: https://doi.org/10.2514/6.2006-
7242.

[9] Arturo Y. Jaen-Cuellar et al. “PID-Controller Tuning Optimization with Ge-
netic Algorithms in Servo Systems”. In: International Journal of Advanced
Robotic Systems 10.9 (2013), p. 324. doi: 10 . 5772 / 56697. eprint: https :

//doi.org/10.5772/56697. url: https://doi.org/10.5772/56697.

[10] Reza N. Jazar. Theory of Applied Robotics. 2nd. Springer New York Dordrecht
Heidelberg London, 2010. isbn: 978-1-4419-1749-2.

[11] Frank J. Massey Jr. “The Kolmogorov-Smirnov Test for Goodness of Fit”. In:
Journal of the American Statistical Association 46.253 (1951), pp. 68–78. doi:
10.1080/01621459.1951.10500769. url: https://www.tandfonline.com/doi/
abs/10.1080/01621459.1951.10500769.

https://doi.org/https://doi.org/10.1016/S0967-0661(01)00062-4
https://doi.org/https://doi.org/10.1016/S0967-0661(01)00062-4
http://www.sciencedirect.com/science/article/pii/S0967066101000624
http://www.sciencedirect.com/science/article/pii/S0967066101000624
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
https://doi.org/https://doi.org/10.1016/j.asoc.2006.03.001
http://www.sciencedirect.com/science/article/pii/S1568494606000251
http://www.sciencedirect.com/science/article/pii/S1568494606000251
https://doi.org/https://doi.org/10.3182/20120328-3-IT-3014.00004
http://www.sciencedirect.com/science/article/pii/S1474667016309946
https://doi.org/10.1109/4235.585892
https://doi.org/10.2514/6.2006-7242
https://doi.org/10.2514/6.2006-7242
https://doi.org/10.2514/6.2006-7242
https://doi.org/10.5772/56697
https://doi.org/10.5772/56697
https://doi.org/10.5772/56697
https://doi.org/10.5772/56697
https://doi.org/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769

REFERENCES 55

[12] Dervis Karaboga. “An Idea Based on Honey Bee Swarm for Numerical Opti-
mization, Technical Report - TR06”. In: Technical Report, Erciyes University
(Jan. 2005).

[13] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Neural Net-
works, 1995. Proceedings., IEEE International Conference on. Vol. 4. Nov.
1995, 1942–1948 vol.4. doi: 10.1109/ICNN.1995.488968.

[14] Serkan Kiranyaz, Moncef Gabbouj, and Turker Ince. Multidimensional Particle
Swarm Optimization for Machine Learning and Pattern Recognition. English.
Adaptation, Learning, and Optimization. Springer, 2014. isbn: 978-3-642-37845-
4. doi: 10.1007/978-3-642-37846-1.

[15] Juha Koljonen. Automatic model-based PID tuning of a servo axis. Tampere
University of Technology, Aug. 2018.

[16] Oliver Kramer. Genetic Algorithm Essentials. Vol. 679. Studies in Computa-
tional Intelligence. Springer International Publishing, 2017. isbn: 978-3-319-
52156-5. url: https://link-springer-com.libproxy.tut.fi/book/10.1007/
978-3-319-52156-5.

[17] R. A. Krohling and J. P. Rey. “Design of optimal disturbance rejection PID
controllers using genetic algorithms”. In: IEEE Transactions on Evolutionary
Computation 5.1 (Feb. 2001), pp. 78–82. issn: 1089-778X. doi: 10.1109/4235.
910467. url: https://ieeexplore.ieee.org/document/910467/.

[18] G. Lin and G. Liu. “Tuning PID controller using adaptive genetic algorithms”.
In: 2010 5th International Conference on Computer Science Education. Aug.
2010, pp. 519–523. doi: 10.1109/ICCSE.2010.5593559.

[19] Rein Luus. “Optimization in model reduction”. In: International Journal of
Control 32.5 (1980), pp. 741–747. doi: 10.1080/00207178008922887. eprint:
https://doi.org/10.1080/00207178008922887. url: https://doi.org/10.
1080/00207178008922887.

[20] Rein Luus and T H. I. Jaakola. “Optimization by Direct Search and Systematic
Reduction in the Size of Search Region”. In: American Institute of Chemical
Engineers Journal 19 (July 1973), pp. 760–766.

[21] S.M. Al-Marzoug and R.J.W. Hodgson. “Luus–Jaakola optimization procedure
for multilayer optical coatings”. In: Optics Communications 265.1 (Sept. 2006),
pp. 234–240. issn: 0030-4018. doi: https://doi.org/10.1016/j.optcom.
2006.03.039. url: http://www.sciencedirect.com/science/article/pii/
S0030401806002756.

[22] Aidan O’Dwyer. “A Summary of PI and PID Controller Tuning Rules for Pro-
cesses with Time Delay. Part 1: PI Controller Tuning Rules”. In: International
Federation of Automatic Control Proceedings Volumes 33.4 (2000), pp. 159–164.
issn: 1474-6670. doi: https://doi.org/10.1016/S1474-6670(17)38237-X. url:
http://www.sciencedirect.com/science/article/pii/S147466701738237X.

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-642-37846-1
https://link-springer-com.libproxy.tut.fi/book/10.1007/978-3-319-52156-5
https://link-springer-com.libproxy.tut.fi/book/10.1007/978-3-319-52156-5
https://doi.org/10.1109/4235.910467
https://doi.org/10.1109/4235.910467
https://ieeexplore.ieee.org/document/910467/
https://doi.org/10.1109/ICCSE.2010.5593559
https://doi.org/10.1080/00207178008922887
https://doi.org/10.1080/00207178008922887
https://doi.org/10.1080/00207178008922887
https://doi.org/10.1080/00207178008922887
https://doi.org/https://doi.org/10.1016/j.optcom.2006.03.039
https://doi.org/https://doi.org/10.1016/j.optcom.2006.03.039
http://www.sciencedirect.com/science/article/pii/S0030401806002756
http://www.sciencedirect.com/science/article/pii/S0030401806002756
https://doi.org/https://doi.org/10.1016/S1474-6670(17)38237-X
http://www.sciencedirect.com/science/article/pii/S147466701738237X

REFERENCES 56

[23] N. A. Patil and G. V. Lakhekar. “Design of PID controller for cascade con-
trol process using genetic algorithm”. In: International Conference on Intel-
ligent Computing and Control Systems. June 2017, pp. 1089–1095. doi: 10.
1109/ICCONS.2017.8250634. url: https://ieeexplore.ieee.org/document/
8250634/.

[24] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[25] K. T. Prasad and Y. V. Hote. “Optimal PID controller for Ball and Beam
system”. In: International Conference on Recent Advances and Innovations
in Engineering. May 2014, pp. 1–5. doi: 10.1109/ICRAIE.2014.6909125. url:
https://ieeexplore.ieee.org/document/6909125/.

[26] N. S. Rathore, V. P. Singh, and D. P. S. Chauhan. “ISE based PID controller
tuning for position control of DC servo-motor using LJ”. In: 2015 International
Conference on Signal Processing, Computing and Control (ISPCC). Sept. 2015,
pp. 125–128. doi: 10.1109/ISPCC.2015.7375010.

[27] J. M. S. Ribeiro et al. “Comparison of PID controller tuning methods: an-
alytical/classical techniques versus optimization algorithms”. In: 2017 18th
International Carpathian Control Conference (ICCC). May 2017, pp. 533–538.
doi: 10.1109/CarpathianCC.2017.7970458.

[28] Robert C. Rice. PID Tuning Guide. https://www.novatechweb.com/wp-

content/uploads/2011/03/PID_Tuning_Guide_022810.pdf. NovaTech, 2010.

[29] W.F. Sacco and N. Henderson. “Finding all solutions of nonlinear systems
using a hybrid metaheuristic with Fuzzy Clustering Means”. In: Applied Soft
Computing 11.8 (Dec. 2011), pp. 5424–5432. issn: 1568-4946. doi: https:
//doi.org/10.1016/j.asoc.2011.05.016. url: http://www.sciencedirect.
com/science/article/pii/S156849461100175X.

[30] Servo Tuning Tutorial. ftp://ftp.pmccorp.com/pub/support/docs/tutorials/
Servo_tuning_tutorial.pdf. Precision MicroControl Corporation, 2015.

[31] Mohammad Shahrokhi and Alireza Zomorrodi. “Comparison of PID Controller
Tuning Methods”. In: Sharif University of Technology. 2012. url: https://pdfs.
semanticscholar.org/116c/e07bcb202562606884c853fd1d19169a0b16.pdf.

[32] Y. Shi and R. Eberhart. “A modified particle swarm optimizer”. In: 1998 IEEE
International Conference on Evolutionary Computation Proceedings. May 1998,
pp. 69–73. doi: 10.1109/ICEC.1998.699146.

[33] Simple Servo Motor Tuning and finding PID gains. https://knowledge.ni.
com/KnowledgeArticleDetails?id=kA00Z0000019MPASA2. National Instruments,
Jan. 2018.

[34] Steven S. Skiena. The Algorithm Design Manual. 2nd. Springer Publishing
Company, Incorporated, 2008. isbn: 1848000693, 9781848000698.

[35] M. Srinivas and L.M. Patnaik. “Adaptive Probabilities of Crossover and Mu-
tation in Genetic Algorithms”. In: IEEE Transactions on systems, man and
cybernetic 24.4 (Apr. 1994), pp. 656–667. url: http://eprints.library.iisc.
ernet.in/6971/2/adaptive.pdf.

https://doi.org/10.1109/ICCONS.2017.8250634
https://doi.org/10.1109/ICCONS.2017.8250634
https://ieeexplore.ieee.org/document/8250634/
https://ieeexplore.ieee.org/document/8250634/
https://doi.org/10.1109/ICRAIE.2014.6909125
https://ieeexplore.ieee.org/document/6909125/
https://doi.org/10.1109/ISPCC.2015.7375010
https://doi.org/10.1109/CarpathianCC.2017.7970458
https://www.novatechweb.com/wp-content/uploads/2011/03/PID_Tuning_Guide_022810.pdf
https://www.novatechweb.com/wp-content/uploads/2011/03/PID_Tuning_Guide_022810.pdf
https://doi.org/https://doi.org/10.1016/j.asoc.2011.05.016
https://doi.org/https://doi.org/10.1016/j.asoc.2011.05.016
http://www.sciencedirect.com/science/article/pii/S156849461100175X
http://www.sciencedirect.com/science/article/pii/S156849461100175X
ftp://ftp.pmccorp.com/pub/support/docs/tutorials/Servo_tuning_tutorial.pdf
ftp://ftp.pmccorp.com/pub/support/docs/tutorials/Servo_tuning_tutorial.pdf
https://pdfs.semanticscholar.org/116c/e07bcb202562606884c853fd1d19169a0b16.pdf
https://pdfs.semanticscholar.org/116c/e07bcb202562606884c853fd1d19169a0b16.pdf
https://doi.org/10.1109/ICEC.1998.699146
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019MPASA2
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019MPASA2
http://eprints.library.iisc.ernet.in/6971/2/adaptive.pdf
http://eprints.library.iisc.ernet.in/6971/2/adaptive.pdf

REFERENCES 57

[36] Wen Tan et al. “Comparison of some well-known PID tuning formulas”. In:
"Computers & Chemical Engineering" 30 (May 2006), pp. 1416–1423.

[37] Tuning position controller. https : / / granitedevices . com / wiki / Tuning _

position_controller. Granite Devices, 2015.

[38] Luke Vandewater et al. “An adaptive genetic algorithm for selection of blood-
based biomarkers for prediction of Alzheimer’s disease progression”. In: BMC
Bioinformatics 16.18 (Dec. 2015), S1. issn: 1471-2105. doi: 10.1186/1471-
2105-16-S18-S1. url: https://doi.org/10.1186/1471-2105-16-S18-S1.

[39] A. Visioli. “Optimal tuning of PID controllers for integral and unstable pro-
cesses”. In: IEE Proceedings - Control Theory and Applications 148.2 (Mar.
2001), pp. 180–184. issn: 1350-2379. doi: 10.1049/ip-cta:20010197.

[40] A. Visioli. Practical PID Control. Advances in Industrial Control. Springer
London, 2006. isbn: 9781846285868. url: https://books.google.fi/books?
id=ymyAY01bEe0C.

[41] S. van der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: Computing in Science
Engineering 13.2 (Mar. 2011), pp. 22–30. issn: 1521-9615. doi: 10.1109/MCSE.
2011.37.

[42] G. Wang, S. Deb, and L. d. S. Coelho. “Elephant Herding Optimization”. In:
2015 3rd International Symposium on Computational and Business Intelligence
(ISCBI). Dec. 2015, pp. 1–5. doi: 10.1109/ISCBI.2015.8.

[43] Yan Wengang, Zhu Yucai, and Zhao Jun. “Closed-loop Identification based
PID Tuning without External Excitation”. In: International Federation of
Automatic Control - PapersOnLine 50.1 (2017), pp. 3995–4000. issn: 2405-
8963. doi: https://doi.org/10.1016/j.ifacol.2017.08.713. url: http:
//www.sciencedirect.com/science/article/pii/S2405896317311564.

[44] M. Zhuang and D. P. Atherton. “Tuning PID controllers with integral perfor-
mance criteria”. In: International Conference on Control. Vol. 1. Mar. 1991,
pp. 481–486.

[45] J.G. Ziegler and N.B. Nichols. “Optimum Setting for Automatic Controllers”. In:
Transactions of American Society of Mechanical Engineers 64 (1942), pp. 759–
768.

https://granitedevices.com/wiki/Tuning_position_controller
https://granitedevices.com/wiki/Tuning_position_controller
https://doi.org/10.1186/1471-2105-16-S18-S1
https://doi.org/10.1186/1471-2105-16-S18-S1
https://doi.org/10.1186/1471-2105-16-S18-S1
https://doi.org/10.1049/ip-cta:20010197
https://books.google.fi/books?id=ymyAY01bEe0C
https://books.google.fi/books?id=ymyAY01bEe0C
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/ISCBI.2015.8
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.713
http://www.sciencedirect.com/science/article/pii/S2405896317311564
http://www.sciencedirect.com/science/article/pii/S2405896317311564

APPENDIX A: LIST OF HARDWARE

Component Vendor Model

Linear motor forcer Chieftec LM-PA-X2
Magnet track Chieftec LM-SA-X1
Linear guide HIWIN WER27R640P
Linear bearings HIWIN WEH27CA
Optical scale RSF AK MS15 version MK
Optical read head RSF AK MS15 TTLx100
Servo drive OptoFidelity OptoDrive
Power supply ProPower PS3003

APPENDIX B: MANUAL TUNING TESTING PLAN

Test phase Component Description

Introduction Purpose of test Explain the purpose of the test
System overview Introduce the testers to the system

Walk-through Test flow Describe the test flow to the testers
Test output List required parameters to tune

Practical phase Tuning w/out a mass plate Tune axis and report parameters
Tuning w/ light mass plate
Tuning w/ heavy mass plate

Feedback Feedback to testers Give feedback of how testing went
Feedback to organizers Gather feedback about test

APPENDIX C: MANUAL TUNING TEST LOG

Test hardware is presented in Section 3.1.1.

Table C.1 Manual tuning without mass plate.

Pos Kp Pos FF Vel Kp Vel Ki Pos ISE Vel ISE

498 100.0 202 104 0.04627 457.1000
2000 100.0 250 200 0.00188 177.7625
1110 100.0 250 350 0.00170 123.3375
800 100.0 350 180 0.00781 144.8000
100 100.0 250 350 0.01698 100.8250

Table C.2 Manual tuning with mass plate 1.

Pos Kp Pos FF Vel Kp Vel Ki Pos ISE Vel ISE

768 100.0 235 157 0.02163 497.9500
2000 100.0 350 350 0.00120 172.2500
790 100.0 440 455 0.00257 104.3375
1600 99.0 350 200 0.00568 203.6125
200 100.0 325 500 0.00878 100.4125

Table C.3 Manual tuning with mass plate 2.

Pos Kp Pos FF Vel Kp Vel Ki Pos ISE Vel ISE

801 100.0 307 198 0.01678 282.3375
2500 100.0 400 350 0.00120 229.6250
1200 100.0 480 550 0.00140 144.8625
1900 100.0 350 300 0.00205 202.5000
150 100.0 325 500 0.01375 115.2375

APPENDIX D: AUTOMATIC TUNING

Table D.1 Automatic velocity controller tuning without mass plate.

Vel Kp Vel Ki Vel Kd Vel FF Acc FF Velocity ISE

177 155 0 2 9 120.1875
144 164 3 3 10 128.4375
190 125 2 2 9 155.5625
151 145 0 2 8 152.5000
144 146 1 2 10 145.0000
216 128 8 2 7 132.6250
163 163 4 2 9 131.7500
146 208 5 2 9 111.1875
197 151 6 2 8 160.8125
197 162 5 1 7 139.0625

Table D.2 Automatic velocity controller tuning with mass plate 1.

Vel Kp Vel Ki Vel Kd Vel FF Acc FF Velocity ISE

273 228 2 3 14 106.3125
300 236 1 2 12 108.4375
283 214 7 3 13 110.9375
268 243 3 2 13 107.8750
317 226 1 3 10 113.1250
302 239 8 1 9 117.4375
313 272 1 3 11 113.8125
306 189 4 3 15 111.0625
256 224 6 1 15 102.8750
307 263 3 2 11 107.3125

Table D.3 Automatic velocity controller tuning with mass plate 2.

Vel Kp Vel Ki Vel Kd Vel FF Acc FF Velocity ISE

360 291 8 2 13 116.9375
394 253 0 3 11 109.1250
340 279 2 2 14 107.0625
362 270 11 3 14 109.4375
388 301 1 2 13 104.2500
367 288 5 3 9 129.5625
357 256 0 3 13 107.2500
332 317 5 0 14 101.7500
412 290 2 2 9 128.6250
395 280 7 4 10 117.0000

Table D.4 Automatic position controller tuning without mass plate.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE

3712 100.49 177 155 0 2 9 0.00045653
4266 100.34 144 164 3 3 10 0.00040112
3988 100.31 190 125 2 2 9 0.00049021
4772 100.48 151 145 0 2 8 0.00047657
4207 100.53 144 146 1 2 10 0.00047781
3762 100.24 216 128 8 2 7 0.00058785
3736 100.05 163 163 4 2 9 0.00041323
4465 100.05 146 208 5 2 9 0.00027470
3595 100.55 197 151 6 2 8 0.00051115
3535 100.50 197 162 5 1 7 0.00053523

Table D.5 Automatic position controller tuning with mass plate 1.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE

3963 100.30 273 228 2 3 14 0.00032851
4051 100.09 300 236 1 2 12 0.00033971
4326 100.00 283 214 7 3 13 0.00036989
3904 100.45 268 243 3 2 13 0.00034402
3586 100.47 317 226 1 3 10 0.00043159
3809 100.01 302 239 8 1 9 0.00039405
3319 100.58 313 272 1 3 11 0.00035958
3489 100.04 306 189 4 3 15 0.00042831
4301 100.22 256 224 6 1 15 0.00030451
3647 100.52 307 263 3 2 11 0.00036033

Table D.6 Automatic position controller tuning with mass plate 2.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE

3436 100.19 360 291 8 2 13 0.00042445
3691 100.27 394 253 0 3 11 0.00047266
3752 100.56 340 279 2 2 14 0.00029512
3272 100.12 362 270 11 3 14 0.00033063
3620 100.56 388 301 1 2 13 0.00046432
3794 100.44 367 288 5 3 9 0.00040648
3594 100.57 357 256 0 3 13 0.00034267
3187 100.18 332 317 5 0 14 0.00037651
3391 100.26 412 290 2 2 9 0.00046337
3333 100.03 395 280 7 4 10 0.00048350

Table D.7 Automatic controller fine tuning without mass plate.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE Vel ISE

4786 100.01 125 160 3 1 10 0.00048472 309.8750
5033 100.46 140 177 4 2 9 0.00044121 360.0521
4227 100.44 134 151 0 3 9 0.00054928 263.9271
4972 100.11 76 203 5 2 13 0.00037122 257.0104
6456 100.23 98 117 2 3 9 0.00045960 378.2396
4388 100.25 165 145 11 1 7 0.00067049 355.5833
5496 100.19 117 182 4 2 8 0.00048245 418.8021
3637 100.30 142 255 4 1 11 0.00059362 483.9375
4999 100.49 114 165 0 2 10 0.00039041 210.4271
4192 100.56 138 210 5 2 11 0.00061040 566.7917

Table D.8 Automatic controller fine tuning with mass plate 1.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE Vel ISE

4793 100.16 132 320 8 1 18 0.00029126 222.8438
4428 100.34 205 278 2 2 18 0.00035907 328.5104
3475 100.07 227 299 4 2 16 0.00033374 208.7500
3770 100.35 243 343 0 2 15 0.00039882 342.9167
4314 100.35 189 303 7 4 15 0.00032502 232.9583
3462 100.41 213 343 5 3 16 0.00037952 264.0833
2746 100.04 300 345 0 2 16 0.00040089 257.4375
2639 100.17 332 212 1 2 20 0.00046924 170.3021
4987 100.46 158 288 4 2 18 0.00025798 203.2917
3662 100.32 203 319 10 3 16 0.00033849 218.5938

Table D.9 Automatic controller fine tuning with mass plate 2.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE Vel ISE

3740 100.01 339 355 8 3 16 0.00052527 532.0000
4225 100.47 276 300 2 2 18 0.00030561 240.5208
3966 100.06 289 306 2 2 15 0.00030168 172.4375
3298 100.28 278 345 1 3 21 0.00026530 153.1563
5064 100.18 244 229 1 3 18 0.00033172 299.3854
3280 100.19 379 322 0 4 12 0.00042691 237.6875
3875 100.43 215 323 2 2 19 0.00026865 144.2083
3187 100.56 272 405 3 3 17 0.00031786 186.0521
2998 100.25 363 355 11 2 16 0.00034895 207.2083
4536 100.31 271 259 3 3 15 0.00028135 172.8229

Table D.10 Automatic controller fine tuning with combined ISE, without mass plate.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE Vel ISE

3731 100.27 160 140 10 2 12 0.00059178 246.8542
5441 100.54 116 165 9 2 9 0.00035732 245.6771
5557 100.57 95 163 0 2 10 0.00040248 266.7708
4874 100.44 134 146 14 3 11 0.00044239 271.8542
4009 100.15 172 156 1 3 9 0.00054944 246.7917

Table D.11 Automatic controller fine tuning with combined ISE, with mass plate 1.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE Vel ISE

3494 100.10 236 275 1 2 16 0.00031664 183.7292
4446 100.38 194 278 1 2 13 0.00031032 192.3646
4860 100.48 183 233 2 1 16 0.00030353 183.1250
4617 100.45 224 247 1 2 14 0.00026838 174.5625
3924 100.56 242 250 1 3 16 0.00029033 159.5625

Table D.12 Automatic controller fine tuning with combined ISE, with mass plate 2.

Pos Kp Pos FF Vel Kp Vel Ki Vel Kd Vel FF Acc FF Pos ISE Vel ISE

3316 100.15 232 360 13 1 19 0.00031472 150.8542
2356 100.29 352 341 7 2 19 0.00038071 125.4896
4563 100.55 191 289 7 3 16 0.00031888 181.3333
3114 100.26 337 358 5 4 14 0.00032746 148.2813
2947 100.20 344 344 2 3 17 0.00027700 130.8854

	Introduction
	Background and motivation
	Objectives
	Outline

	Theoretical background
	PID Controller
	PID controller terms
	Cascade controller
	Traditional tuning of a PID controller

	PID controller performance indices
	Parameter optimization
	Parameter search methods
	Evolutionary Algorithms
	Swarm Intelligence
	Parameter optimization summary

	Method for robot axis tuning
	Test system description
	Hardware
	Software and controller

	Tuning algorithm
	Fitness function

	Implementation and testing
	Experimental test setup
	Implementation
	Performance index
	Optimization method

	Results
	Manual tuning
	Automatic tuning
	Optimized ZN tuning

	Result analysis
	Manual tuning
	Automatic tuning
	Performance comparison

	Discussion

	Conclusion
	References
	Appendix List of hardware
	Appendix Manual tuning testing plan
	Appendix Manual tuning test log
	Appendix Automatic tuning

